Читаем Малыши и математика. Домашний кружок для дошкольников полностью

(в столбик), а затем проверял результат в десятичной системе. Занятие это он себе придумал сам. Умножал, скажем, 10 на 100 или 1 000 на 1 000, а потом проверял, получится ли 1 000 или, соответственно, 1 000 000. Существенно то, что он совершенно самостоятельно понял, как при сложении большого числа единиц переносить их сразу в несколько разрядов («1 + 1 + 1 + 1 — пишем 0, сюда запоминаем 0, а сюда 1»). Ошибки, однако, допускал, забывая, что в какой разряд запомнил. Я его научил перенесённые знаки записывать снизу.

Сегодня обсуждали связь двоичной системы с восьмеричной и с шестнадцатеричной. Он тоже всё понял. А вот 3 4 сравнить по величине 3/5 и 4/7 никак не может. Слишком формальный стиль мышления: всё время пытается придумать, какие действия надо совершить, а в содержание понятия не вдумывается.

20 февраля 1984 года. Квадрат площадью в 2 клетки. (Снова на кружке.) На этот раз меня удивил Петя. Я дал такую задачу: построить квадрат площадью ровно в 2 клеточки. Сначала Дима пробовал (1 + 1/2)2 (рис. 130 слева) и (1 + 1/4)2(рис. 130 в центре); оба раза правильно подсчитал площадь и понял, что 2 не получается. Я думал — вот я сейчас поражу ребят своим решением! Но тут почти тотчас же Петя взял и нарисовал правильный ответ (рис. 130 справа)[41].



Рис. 130.Первая попытка (слева): сторона квадрата равняется 11/2, а площадь складывается из одной целой клетки, двух половинок и ещё одной четверти, т. е. равна 21/4. Вторая попытка (в центре): сторона равна 11/4, а площадь получается равной 1 + 2/4 + 1/16 = 19/16. (Рассмотрите сами квадрат со стороной 11/3.) Наконец, площадь квадрата, показанного справа, равняется в точности двум клеткам: видно, что он состоит из четырёх половинок клетки, имеющих форму треугольника.


На днях мы с Димой обсуждали иррациональность √2. Он задавал очень разумные вопросы:

— Значит, число √2–1 тоже такое? А 2√2?

И тому подобное.

Папа мне рассказывал доказательство, но я так не понял Во-первых, оно мне показалось слишком длинным, а, во-вторых, я раньше никогда не встречал доказательств от противного Предположили, что дробь несократимая, потом как то туманно вывели, что все таки сократимая Вывод из этого почему то, что такой дроби не существует — Дима

Чёт-нечет с умножением. На том же занятии играли в такую игру: выкидывали пальцы и считали произведение; если оно было чётным, выигрывал я, а если нечётным, выигрывал мой противник. Естественно, всегда выигрывал я. Дима сразу догадался (а может знал — не помню), Петя догадался очень нескоро, а Женя вообще мало что понимал.

8 марта 1984 года. Деление уголком. Сегодня научил Диму делить уголком. Пока он усвоил метод не очень твёрдо. К концу дня выяснилось, что я забыл научить его вычитать (т. е. занимать из старших разрядов в младшие — всё остальное и так ясно). Он придумал свой способ: увеличивал уменьшаемое и вычитаемое на столько, чтобы в младшем разряде цифра у уменьшаемого была больше (например, 50–47 = 57–54).

23–25 марта 1984. Системы счисления. Закончилась третья четверть, и Дима получил по математике четвёрку (вообще у него в этой четверти единственная пятёрка — по физкультуре, а остальные — четвёрки). У его соседа Кости — тоже четвёрка по математике (единственная; все остальные — пятёрки). Дима мне рассказывал, что на последней контрольной Костя у него спрашивал, сколько будет 12 — 6. Будучи примерным учеником, Дима не ответил, и Костя, после некоторого размышления, написал: 12 — 6 = 8.

У меня возникла идея новой задачи, и я спросил у Димы, в какой системе счисления будет верно равенство 12 — 6 = 8. Он сразу сказал, что система нужна не менее, чем девятеричная, чтобы была цифра 8. Дальше он долго говорил «не знаю, не знаю…», повторив эти слова множество раз. К сожалению, в последнее время он всегда с этого начинает: сначала долго убеждает себя и всех, что задача у него не получится, а уж потом только её решает.

После того, как я его пристыдил как следует, задачу он всё-таки решил и назвал двенадцатеричную систему счисления.

— Так что, — сказал я, — наверное, Костя просто решал задачу в двенадцатеричной системе счисления.

Перейти на страницу:

Похожие книги

Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей
Томек в стране кенгуру
Томек в стране кенгуру

Альфред Шклярский принадлежит к числу популярнейших польских, писателей, пишущих для молодежи. Польскому читателю особенно полюбился, цикл приключенческих романов Шклярского. Цикл объединен образами главных героев, путешествующих по разным экзотическим странам земного шара. Несмотря на общность героев, каждый роман представляет из себя отдельную книгу, содержание которой определено путешествиями и приключениями Томека Вильмовского, юного героя романов, и его взрослых товарищей.Кроме достоинств, присущих вообще книгам приключенческого характера, романы Шклярского отличаются большими ценностями воспитательного и познавательного порядка. Фабула романов построена с учетом новейших научных достижений педагогики. Романы учат молодых читателей самостоятельности, воспитывают у них твердость характера и благородство.Первое и второе издания серии приключений Томека Вильмовского разошлись очень быстро и пользуются большим успехом у молодых советских читателей, доказательством чему служат письма полученные издательством со всех концов Советского Союза. Мы надеемся, что и третье издание будет встречено с такой же симпатией, поэтому с удовольствием отдаем эту серию в руки молодых друзей.

Альфред Шклярский

Приключения / Детская образовательная литература / Путешествия и география / Детские приключения / Книги Для Детей