Читаем Маркетинг, основанный на данных. 15 показателей, которые должен знать каждый полностью

Достоинство табл. 5.7 заключается в том, что эти расчеты дают менеджерам возможность объективно обсуждать маркетинговую кампанию или действия, связанные с запуском нового продукта (возможные позитивные и негативные результаты). Анализ чувствительности позволяет модифицировать прогнозы и понимать степень влияния различных факторов, а также выявлять важные допущения в модели.

Обычно в этой функции изменяется не более двух параметров. Однако при наличии значительного количества параметров в модели ROMI лучше использовать анализ по методу Монте-Карло. Его описание кажется сложным, но применять его на практике просто, и это помогает понять особенности происходящих явлений.

Прежде всего нужно понять, что каждое предположение в модели имеет целый ряд возможных исходов. Чаще всего их можно представить в виде колоколообразной кривой, где лучшие и худшие исходы занимают по 5 %, а набор ожидаемых исходов – основную часть графика. Иными словами, лучшие и худшие исходы отделены от среднего на расстояние двух величин стандартного отклонения (под стандартным отклонением подразумевается степень «размаха» кривой). Далее можно выбрать набор случайных входных параметров, используя для каждого из них определенный диапазон предположений. После этого нужно рассчитать параметры исхода для каждого случайно выбранного входного параметра.


Табл. 5.7. Табличная функция анализа чувствительности

Параметры доли рынка и размера заказа (0–100 %) отражают предположения из табл. 5.5 и на рис. 5.4 – от худшего к лучшему. Шаблон можно загрузить на странице www.agileinsights.com/ROMI


Понятно, что один цикл оценки по методу Монте-Карло – возможный исход для модели ROMI с определенным набором входных переменных. По сути, это моделирование ситуации, при которой на проводимую маркетинговую кампанию влияют различные случайные риски и входные параметры входят в определенный диапазон. Если вы проведете расчеты несколько тысяч раз, то со временем выясните, что произойдет в результате тысяч идентичных кампаний с учетом возможной вариации входных параметров и связанных с ними рисков. Исход будет представлен в виде таблицы, показывающей частоту каждого из возможных результатов.

Суть моделирования по методу Монте-Карло состоит в том, чтобы создать набор случайных чисел для каждой из ключевых переменных. Для статистических расчетов входных параметров следует принять во внимание прежний опыт, исследования рынка и суждения управленческой команды. Затем случайные цифры помещаются в таблицу для анализа и рассчитывается исход (показатели IRR и NPV); определяется новый набор случайных чисел, основанный на статистических функциях для каждой входной переменной, и вновь рассчитывается возможный исход. Этот процесс повторяется много раз, что в итоге позволяет создать распределение различных исходов.

Для проведения расчетов по методу Монте-Карло есть целый ряд готовых программных продуктов, таких как Palisades@RISK и Crystal Ball. Они просты в использовании: сначала нужно выбрать конкретные ячейки, а затем определить возможные пределы для каждой переменной. После этого программа случайным образом меняет (в заданных пределах) значения в выбранных клетках. Исход (IRR или NPV) автоматически рассчитывается для огромного количества циклов, после чего создается совокупный статистический отчет о возможных исходах.

На рис. 5.5 приведен пример расчета по методу Монте-Карло для данных из табл. 5.6 и 5000 случайных вариантов входных переменных. При расчете одновременно менялись параметры общих расходов на проект, роста доли рынка и размера заказа. Функции соответствовали нормальному распределению, а стандартное отклонение определялось примерным значением лучшего и худшего сценариев для каждой переменной. Средняя величина NPV, или ожидаемая ценность, составила 171 тысячу долларов при величине стандартного отклонения в 153 тысячи.

А главное – все показатели могут меняться прямо на экране. Вы видите, как клетки в модели перемещаются, а через пару минут появляется «ответ» (примерно такой же, как на рис. 5.5). Я проводил подобные симуляции в рамках программ для руководителей и их клиентов ряда компаний, и аудитория была в восторге. С помощью программы @RISK я осуществлял расчеты по модели, сходной с моделью в табл. 5.6, не более чем за 10 минут, и окружающим я казался гением!

Главное достоинство этого подхода в том, что можно «видеть» лучший, худший и ожидаемый исходы для ROMI, а также рассчитать вероятность их наступления. Для данного примера есть 12,8 %-ная вероятность того, что NPV окажется отрицательным, а IRR – меньше минимальной ставки доходности (рис. 5.5). Руководство компании может задать себе непростой вопрос: допустим ли подобный уровень риска, – а затем выбрать стратегию, способную снизить будущие риски за счет изменения входных параметров.


Перейти на страницу:

Похожие книги

Искусство управления IT-проектами
Искусство управления IT-проектами

В отличие от множества трудов, посвященных руководству проектами и командами, в этой книге не проповедуются никакие новые учения и не превозносятся великие теории. Скотт Беркун считает залогом успеха практику и разнообразие подходов. В книге описываются основные сложности и проблемные ситуации, возникающие в работе менеджера проекта, даны рекомендации по выходу из них.Издание предназначено не только для лидеров команд и менеджеров высшего звена, но и для программистов, тестеров и других исполнителей конкретных проектных заданий. Также оно будет полезно студентам, изучающим бизнес-менеджмент, проектирование изделий или программную инженерию.Текст нового издания значительно переработан автором с целью добиться большей ясности, кроме того, книга дополнена новым приложением и более чем 120 практическими упражнениями.

Скотт Беркун

Деловая литература
Думай как чемпион: как «Формула-1» может прокачать самоорганизацию, эффективность и мотивацию
Думай как чемпион: как «Формула-1» может прокачать самоорганизацию, эффективность и мотивацию

Лишь немногие некогда известные спортсмены смогли превратиться в медийных персон с огромным количеством навыков, шармом и ореолом успешности. Один из них – Дэвид Култхард. Это не только победитель тридцати Гран-при и знаток «Формулы-1», но также владелец отельного бизнеса и кинопродюсерской компании. В книге Култхард просто и интересно рассказывает, как он смог овладеть всеми вышеперечисленными ремеслами, отточив мастерство за карьеру в самых требовательных автогонках мира. Это не только сборник увлекательных историй с участием Михаэля Шумахера, Себастьяна Феттеля и других именитых пилотов. Книга Култхарда – гид по бизнесу в спорте и спорту в бизнесе.

Дэвид Култхард

Деловая литература / О бизнесе популярно / Финансы и бизнес