Читаем Машина-двигатель<br />От водяного колеса до атомного двигателя полностью

В реальных тепловых двигателях, как мы дальше увидим, трудно выполнить цикл, похожий на этот, да и сам Карно не ожидал, что удастся точно так заставить работать паровую машину или другой двигатель. Но чем больше будет похож процесс в двигателе на цикл Карно, тем лучше он будет использовать тепло.

Можно ли всё тепло сгорания топлива использовать в тепловом двигателе? Нет. Даже в идеальном цикле Карно часть тепла отдается охладителю.

В большинстве тепловых двигателей совершает работу не один и тот же заряд рабочего тела. Пар, поступивший в цилиндр паровой машины, совершив работу, покидает этот цилиндр, а на его место при новом ходе поступит новый пар. Это обстоятельство также отличает реальные двигатели от идеального, но и тут остаются в силе главные направления, указанные Карно. Следуя этим направлениям, паровая техника к концу XIX века сделала огромные успехи.

Новая наука положила основу совершенствованию не только паровых машин, но и всех тепловых двигателей на многие десятилетия вперед, вплоть до наших дней.

Что же касается паровых машин, то к началу XX века уже стали строить паровые машины мощностью в 6–8 тысяч лошадиных сил, в то время как сто лет тому назад — к началу XIX века, во времена Уатта, машины строились лишь до 50 лошадиных сил. Паровая машина XX века использовала пар высокого давления и высокой температуры, была значительно экономичней первых машин и при большой мощности была сравнительно небольших размеров.

«Была? Почему была, а сейчас разве не строят паровых машин?» — спросите вы.

Чтобы ответить на этот вопрос, нам придется снова вернуться в XIX век и проследить за появлением еще одного теплового двигателя — паровой турбины.

Глава III. Двигатель тепловых электростанций

От молочного сепаратора к паровой турбине

Идея Герона Александрийского, так же как и проект Джиованни Бранка, к началу XIX века вновь привлекла к себе внимание инженеров и изобретателей. Большинство рабочих машин требовало от двигателя вращательного движения.

Казалось заманчивым попытаться использовать энергию пара для получения механической работы не в поршневой машине, где приходится возвратно-поступательное движение поршней превращать во вращательное движение вала с помощью кривошипно-шатунного механизма, а в машине-турбине, где пар должен, выходя из котла, сразу создавать вращательное движение рабочего колеса.

Пытались повторять «Геронов шар», используя реактивное действие струи пара, пытались предлагать двигатели, очень напоминающие колесо Бранка, где имеется в виду использование активного действия струи пара, — множество всяких проектов появлялось.

За первые две трети XIX века насчитывают более двухсот предложений паровых турбин. Но ни один проект не мог быть практически осуществлен, — еще не знали, как правильно рассчитывать такие турбины, какие формы придавать лопаткам и каналам, направляющим пар на лопатки. Слишком большие скорости вращения, большие диаметры колес, повышенные требования к материалам затрудняли применение таких двигателей на практике.

Паровая турбина интересовала и русских изобретателей. Одним из первых — в 1806–1813 годах — Поликарп Залесов сооружал на Алтайском Сузунском заводе модели паровых турбин. Однако эти начинания, как и многие другие, не получили нужной поддержки в царской России.

Первой турбиной, которую можно было практически использовать, была турбина, построенная шведским инженером Лавалем в 1890 году.

Карл-Густав-Патрик де Лаваль принадлежал к старинной французской семье, переехавшей в Швецию еще в конце XVI века — в тот темный период, когда господствующие религии не стеснялись огнем и мечом подавлять своих «братьев во Христе», имеющих несколько отличные религиозные взгляды. Учинив невиданную резню в ночь на святого Варфоломея, французские феодалы-католики сломили сопротивление своих религиозных противников — гугенотов. Оставшиеся в живых поспешили покинуть Францию. Так семья Лавалей оказалась в Швеции.

Будущий изобретатель первой промышленной паровой турбины родился в 1845 году.

Лаваль получил хорошее, разностороннее образование, окончив два высших учебных заведения: технологический институт и университет.

Обладая широким техническим кругозором и нужными математическими знаниями, Лаваль с первых же дней своей практической деятельности посвятил себя разработке новых машин и устройств, совершенствующих самые различные области техники.

Интересно отметить, что свои работы по созданию турбины Лаваль начал с конструирования сепаратора молока. Чтобы сообщить сепаратору большую скорость вращения, Лаваль применил способ Герона, — через две отогнутые трубки выходил пар, отчего эти трубки вместе с цилиндром сепаратора быстро вращались.

Далее Лаваль стал совершенствовать турбину и в конце концов отошел от реактивного принципа Герона и построил свою первую промышленную турбину на активном принципе Бранка. Однако, обладая глубокими инженерными знаниями, Лаваль, естественно, не пошел по примитивному пути Бранка.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже