А если хоть часть соответствующих знаний тоже можно было создавать автоматически? Если к сочетанию программы для генеративного дизайна и трехмерной печати можно было бы добавить дополнительные инструменты, чтобы творческие цифровые технологии продвинулись дальше? Чтобы выяснить это, в 2013 году в Лос-Анджелесе представители Autodesk объединились с группой автомобильных дизайнеров и водителей-каскадеров[274]
. Они поставили цель разработать автоматизированную систему, которая могла бы с нуля проектировать гоночные шасси и самостоятельно определять, как они должны функционировать, – иными словами, задавать его характеристики.Для этого команда сначала построила урезанную модель традиционного гоночного автомобиля – фактически только шасси, трансмиссию, двигатель, сиденье и колеса. Затем специалисты покрыли шасси датчиками, измеряющими нужные параметры: напряжение, деформацию, температуру, смещение и все прочие вещи, к которым должно быть приспособлено шасси. Как мы уже говорили в предыдущей главе, цифровые датчики сейчас одновременно малы, дешевы и производительны, поэтому команда смогла без больших затрат получить огромное количество точных данных от шасси, оснащенного измерительными приборами.
Автомобиль с датчиками отвезли в пустыню Мохаве, где шофер-испытатель водил его на предельных режимах, разгоняясь и тормозя максимально жестко (но без крушений), а датчики машины в это время собирали информацию. К концу заезда у команды имелось 20 миллионов замеров для конструкции автомобиля и сил, действующих на него. Все эти данные были загружены в Project Dreamcatcher – систему генеративного дизайна, разработанную Autodesk, – а потом использованы для трехмерного моделирования шасси. Рисунок 2 показывает то, что выдала программа. Нам кажется, что шасси для гоночного автомобиля тут можно опознать с большим трудом. Скорее это похоже на череп мамонта или кита, или, возможно, на микроскопический панцирь диатомовой водоросли, состоящий из диоксида кремния[275]
.Рис. 2
Модель шасси гоночного автомобиля (схема предоставлена компанией Autodesk)
Это не простое совпадение. Кости, экзоскелеты и прочие природные конструкции победили в ходе древней безжалостной эволюционной конкуренции – битвы в буквальном смысле не на жизнь, а на смерть. Эволюция создала изумительные проекты, одновременно жизнеспособные, выносливые, энергетически эффективные, изощренные, сильные и стройные. Поэтому мы не должны удивляться тому, что программа генеративного дизайна, которая получила задание спроектировать оптимальную конструкцию, удовлетворяющую какому-либо набору функциональных требований, выдает нечто, выглядящее так, как будто оно создано природой.
Вы обратили внимание на еще одну необычную черту? Шасси асимметрично, его правая и левая стороны не являются зеркальным отражением друг друга. Это вполне разумно. Гоночный автомобиль чаще ездит по кругу в одном направлении[276]
, чем в другом, поэтому на обе стороны шасси действуют различные силы. Дизайнеры-люди знали об этом давно, но их творения редко бывали настолько асимметричными (если вообще бывали), как проект, созданный программой генеративного дизайна.Примеры вроде гоночного шасси убеждают нас, что цифровое творчество – это больше, чем просто подражание и инкрементализм[277]
. Компьютеры способны на нечто большее, чем просто расширение и комбинирование уже сделанного людьми. Мы оптимистично смотрим на то, что может происходить нечто противоположное. Когда компьютеры вооружаются накопленным человеком научным и техническим знанием и получают эксплуатационные требования для какой-либо ситуации (или достаточное количество данных, чтобы выяснить их самостоятельно), они предлагают новые решения, которые людям не пришли бы в голову.Машины-проектировщики не имеют слепых пятен и предрассудков, которые, видимо, неизбежно накапливаются вместе с опытом у людей. Доступные сегодня вычислительные мощности позволяют машинам-проектировщикам быстро и недорого исследовать множество решений – больше, чем может придумать целое здание, полное людей. Цифровые творцы уже существуют.
Типичный пример творчества в духе «Эврика!» в науке – это появление новой теории, которую со временем подкрепляют результаты экспериментов. Хорошо продуманное исследование, проведенное специалистами по вычислительной биологии в Медицинском колледже Бейлора и аналитиками из IBM, показало, что технология искусственного интеллекта IBM Watson могла бы применяться для создания полезных научных гипотез[278]
. Группа искала киназы[279] – активаторы белка p53; он интересен тем, что сдерживает развитие рака. Исследователи заставили Watson прочитать[280] 70 тысяч опубликованных научных работ по этой теме[281], а затем попросили спрогнозировать киназы, которые будут включать и выключать деятельность белка p53. Watson назвал семь возможных вариантов.