Читаем Математические чудеса и тайны полностью

Объяснение. Для демонстрации этого фокуса специально выбирают 13 карт так, чтобы на каждое целое число от 1 до 13 приходилась одна карта с соответствующим числовым значением. Их располагают в порядке убывания числовой величины, начиная с короля и кончая тузом. Показывающий снимает пачку несколько раз и передает ее зрителю, незаметно посмотрев на нижнюю карту. Допустим, это была четверка. После того как карты будут переложены, показывающнй отсчитывает сверху четыре карты и последнюю из них открывает. Ее числовое значение укажет число переложенных карт.[9]


Фокус с нахождением карты

Колода карт тасуется. Показывающий бегло ее просматривает, кладет лицевой стороной вниз и называет одну карту. Допустим, это двойка червей. Теперь кто-нибудь называет число от 1 до 26. Показывающий отсчитывает по одной это число карт на стол и открывает верхнюю карту положенной им кучки. Но это не двойка червей!

Показывающий принимает озадаченный вид и высказывает предположение, что карта, может быть, осталась в нижней половине колоды. Неверная карта поворачивается лицевой стороной вниз и кладется на эту полуколоду, а сверху помещаются остальные карты из кучки, оставшейся на столе. Зрителя просят назвать еще одно число, на этот раз от 26 до 52. Это число карт снова сдается на стол. И опять-таки оказывается, что верхняя карта в кучке — не двойка червей.

Показывающий принимает озадаченный вид и высказывает предположение, что карта, может быть, осталась в нижней половине колоды. Неверная карта поворачивается лицевой стороной вниз и кладется на эту полуколоду, а сверху помещаются остальные карты из кучки, оставшейся на столе. Зрителя просят назвать еще одно число, на этот раз от 26 до 52. Это число карт снова сдается на стол. И опять-таки оказывается, что верхняя карта в кучке — не двойка червей.

Опять неверная карта переворачивается и кладется на нижнюю часть колоды, а карты, взятые со стола, помещают сверху. Теперь показывающий высказывает предположение, что двойка червей найдется, если от второго числа отнять первое. Производится вычитание, и отсчитывается число карт, равное разности, следующая карта открывается, и на этот раз она оказывается двойкой червей!

Объяснение. Бегло просмотрев карты, показывающий просто называет верхнюю карту колоды. После двух отсчетов карта автоматически оказывается в положении, следующем за указываемым разностью двух чисел, названных зрителем[10]).

Глава вторая. ФОКУСЫ С МЕЛКИМИ ПРЕДМЕТАМИ

Пожалуй, почти каждый мелкий предмет, так или иначе связанный с числами или счетом, использовался для показа фокусов математического характера или для математических головоломок и задач. Самая большая группа таких фокусов — фокусы с игральными картами — была нами рассмотрена выше. В настоящей и последующих главах мы рассмотрим математические фокусы с другими мелкими предметами.

Не стараясь сделать изложение исчерпывающим, мы лишь проиллюстрируем различные принципы, на которых они основаны.

Игральные кости

Игральные кости так же стары, как и игральный карты, а история зарождения этой игры так же неясна. И все же с удивлением приходится отметить, что самые ранние из известных игральных костей древней Греции, Египта и Востока имеют точно такой же вид, как и современные, т. е. кубик с цифрами от единицы до шестерки, нанесенными на грани кубика и расположенными таким образом, что сумма их на противоположных гранях равна семи. Однако кубическая форма игральной кости объясняется тем, что только правильный многогранник обеспечивает полное равноправие всех граней, а из пяти существующих в природе правильных многогранников куб обладает, явным преимуществом как атрибут игры: его легче всего изготовить, и, кроме того, он единственный из них, который перекатывается легко, но не слишком (тетраэдр перекатывать труднее, а октаэдр, икосаэдр и додекаэдр настолько близки по своей форме к шару, что быстро укатываются). Поскольку куб имеет шесть граней, то нанесение на них шести первых целых чисел напрашивается само собой, а расположение их с суммой — семеркой — представляется наиболее простым и симметричным. И это является между прочим единственным способом такого их попарно противоположного расположения, чтобы суммы всех пар были одинаковы.

Именно этот «принцип семерки» лежит в основе большинства математических фокусов с игральными костями. В лучших из таких фокусов упомянутый принцип применяется настолько тонко, что о нем никто и не подозревает. В качестве примера рассмотрим один очень старый фокус.


Угадывание суммы

Показывающий поворачивается спиной к зрителям, а в это время кто-нибудь из них бросает на стол три кости. Затем зрителя просят сложить три выпавших числа, взять любую кость и прибавить число на нижней ее грани к только что полученной сумме.

Перейти на страницу:

Похожие книги