Читаем Математические головоломки профессора Стюарта полностью

Как именно? Ответ см. в главе «Загадки разгаданные».

Существуют ли фигуры, которыми можно замостить плоскость, но нельзя сделать это периодически? Вопрос этот глубоко связан с математической логикой. В 1931 г. Курт Гёдель доказал, что в арифметике существуют неразрешимые задачи, то есть утверждения, для которых никакой алгоритм не в состоянии определить, истинны они или ложны. (Алгоритм – это систематический процесс, который гарантированно прекращается при получении верного ответа.) Из этой теоремы следует другая, более драматичная: в арифметике существуют утверждения, которые невозможно ни доказать, ни опровергнуть.

Приведенный Гёделем пример такого утверждения был несколько надуманным, и специалисты по математической логике долго гадали, существуют ли более естественные нерешаемые проблемы. В 1961 г. Хао Ван работал над проблемой домино: если имеется конечное число фигур для мощения, то существует ли алгоритм, который был бы способен определить, можно ли этими фигурами замостить плоскость? Ван показал, что если существует подходящий набор, которыми можно замостить плоскость, но нельзя замостить ее периодически, то такого алгоритма не существует. Его идея состояла в том, чтобы перевести правила логики в формы плиток и использовать результаты вроде гёделевых. И она сработала: в 1966 г. Роберт Бергер нашел набор из 20 426 таких плиток, доказав тем самым, что проблема домино действительно неразрешима.

20 000 различных фигур – это много. Бергеру удалось снизить их число до 104; затем Ганс Лейхли снизил его до 40. Рафаэль Робинсон довел число форм до шести. Роджер Пенроуз, открыв в 1973 г. так называемые плитки Пенроуза (см. «Кабинет…» с. 149), еще уменьшил их число, всего до двух. Получилась интригующая математическая загадка: существует ли единственная фигура, с помощью которой можно замостить плоскость, но нельзя замостить ее периодически? (При этом можно использовать также зеркальное отражение той же фигуры.) Ответ был найден в 2010 г. Джошуа Соколаром и Джоан Тейлор[31], и ответ этот – «да».

Предложенная ими фигура показана на рисунке. Это «разрисованный шестиугольник» с дополнительными «правилами стыковки», и он отличается от собственного зеркального отражения. Рисунки на плитке должны стыковаться вполне определенным образом – так, как показано на рисунке.



На следующем рисунке показана центральная область замощенной такими фигурами плоскости. Можно заметить, что узор на ней не выглядит периодическим. В статье объясняется, почему такое мощение можно распространить на всю площадь и почему результат не может быть периодическим. Подробности можно узнать непосредственно из статьи.


Теорема о двух красках

Из мемуаров доктора Ватсапа

– Ну, Сомс, эта забавная небольшая головоломка сможет поднять вам настроение, – я перебросил Daily Reporter другу и компаньону, почти знаменитому детективу, страдавшему в настоящее время от приступа депрессии потому только, что его конкурент из дома напротив явно достиг большей известности и имел все шансы это преимущество сохранить.

Он, издевательски рассмеявшись, отбросил газету в сторону.

– Ватсап, у меня не хватит энергии на чтение.

– Тогда я сам вам прочту, – ответил я. – Кажется, знаменитый математик Артур Кейли опубликовал статью в «Записках Королевского географического общества», в которой задал вопрос…

– Вопрос о том, можно ли раскрасить произвольную карту не более чем четырьмя красками так, чтобы соседние области оказались окрашенными в разные цвета, – прервал меня Сомс. – Это давняя проблема, Ватсап, и я боюсь, что ответ на этот вопрос не будет получен при нашей жизни. – Я ничего не сказал, надеясь вытащить его на дальнейший разговор, поскольку это была самая длинная фраза, которую он произнес почти за неделю. Мой план сработал, и после минуты неловкого молчания он продолжил: – Молодой человек по имени Фрэнсис Гутри сформулировал эту задачу за два года до моего рождения. Будучи не в состоянии решить ее самостоятельно, он обратился к своему брату Фредерику, ученику профессора Огастеса де Моргана.

– Ах да, Гусси, – вставил я, поскольку был знаком с семьей этого достойного восхищения чудака, автора книги «Бюджет парадоксов» и бича всех свихнувшихся на математике.

– Де Морган, – продолжал Сомс, – ничего не добился, поэтому попросил заняться ею великого ирландского математика сэра Уильяма Роуэна Гамильтона, который, однако, ответил ему отказом. На том все и застопорилось до тех пор, пока Кейли вновь не взялся за эту задачу. Хотя я не представляю, почему он решил опубликоваться именно в этом журнале.

– Возможно, потому, – предположил я, – что географы интересуются картами? – но Сомс только презрительно хмыкнул.

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг