Существует один очевидный класс сетей, для которых ответ оказывается необычно маленьким. Если узлы образуют замкнутое кольцо, то единственное положение, которое можно получить разрешенными ходами, – это начальное положение, поскольку 0 по условию должен вернуться в начальную точку. Все остальные числа будут расставлены в прежнем циклическом порядке; не существует способа, посредством которого один номер может обогнуть другой и оказаться с другой его стороны. Теорема Рика Уилсона (названная так, чтобы избежать путаницы с другим математическим Уилсоном) утверждает, что если оставить в стороне кольцевые сети, то в любой другой сети могут быть получены либо
Ровно за одним замечательным исключением.
В теореме содержится сюрприз.
В рассуждениях используется абстрактная алгебра, а именно некоторые элегантные свойства групп перестановок. Подробности см.: Alex Fink and Richard Guy, Rick's tricky six puzzle: S5 sits specially in S6,
Сложно, как азбука
Время от времени математикам на ум приходят безумные, на первый взгляд, идеи, влекущие за собой, как оказывается позже, громадные последствия. ABC-гипотеза – из их числа.
Помните Великую теорему Ферма? В 1637 г. Пьер де Ферма высказал гипотезу о том, что если
не имеет ненулевых целых решений. С другой стороны, при
Дело сделано, можно было бы подумать. Но в 1983 г. Ричард Мейсон вдруг понял, что никто и никогда не рассматривал внимательно Великую теорему Ферма для
Не нужно быть алгебраическим гением, чтобы найти решения этого уравнения: 1 + 2 = 3, 2 + 2 = 4. Но Мейсон задумался, не станет ли этот вопрос интереснее, если наложить на
Более 2000 лет назад Евклид знал, как можно найти все пифагоровы тройки при помощи того, что мы сегодня называем алгебраическими формулами. В 1851 г. Жозеф Лиувилль доказал, что для уравнения Ферма при
где
Решения, опять же, найти несложно, но они не могут все быть «интересными». Степенью многочлена называется наибольшая степень
Специалисты по теории чисел часто ищут аналогии между многочленами и целыми числами. Естественным аналогом теоремы Мейсона – Стозерса могла бы быть такая: пусть
К несчастью, очевидно, что это утверждение неверно. Так, если взять сумму 9 + 16 = 25, то имеем 9 = 3 × 3 (2 делителя), 16 = 2 × 2 × 2 × 2 (4 делителя) и 25 = 5 × 5 (2 делителя). А их произведение
«Для любого ε > 0 существует лишь конечное число троек положительных целых чисел, не имеющих общих делителей и удовлетворяющих уравнению