Читаем Математические головоломки полностью

Число это столь чудовищно велико, что никакие сравнения не помогают уяснить себе его грандиозность. Число электронов видимой Вселенной ничтожно по сравнению с ним. В моей «Занимательной арифметике» (гл. десятая) уже говорилось об этом. Возвращаюсь к этой задаче лишь потому, что хочу предложить здесь по ее образцу другую.

Тремя двойками, не употребляя знаков действий, написать возможно большее число.


РЕШЕНИЕ

Под свежим впечатлением трехъярусного расположения девяток вы, вероятно, готовы дать и двойкам такое же расположение:


222.


Однако на этот раз ожидаемого эффекта не получается. Написанное число невелико – меньше даже, чем 222. В самом деле: ведь мы написали всего лишь 24, т. е. 16.

Подлинно наибольшее число из трех двоек – не 222 и не 222 (т. е. 484), а


222 = 4 194 304.


Пример очень поучителен. Он показывает, что в математике опасно поступать по аналогии; она легко может повести к ошибочным заключениям.

Тремя тройками

ЗАДАЧА

Теперь, вероятно, вы осмотрительнее приступите к решению следующей задачи.

Тремя тройками, не употребляя знаков действий, написать возможно большее число.


РЕШЕНИЕ

Трехъярусное расположение и здесь не приводит к ожидаемому эффекту, так как

333, т. е. 327, меньше чем 333.


Последнее расположение и дает ответ на вопрос задачи.

Тремя четверками

ЗАДАЧА

Тремя четверками, не употребляя знаков действий, написать возможно большее число.


444,


РЕШЕНИЕ

Если в данном случае вы поступите по образцу двух предыдущих задач, т. е. дадите ответ


444,


то ошибетесь, потому что на этот раз трехъярусное расположение


как раз дает большее число. В самом деле, 44 = 256, а 4256 больше чем 444.

Тремя одинаковыми цифрами

Попытаемся углубиться в это озадачивающее явление и установить, почему одни цифры порождают числовые исполины при трехъярусном расположении, другие – нет. Рассмотрим общий случай.

Тремя одинаковыми цифрами, не употребляя знаков действий, изобразить возможно большее число.

Обозначим цифру буквой а. Расположению


222, 333, 444


соответствует написание


а10а+а, т. е. а11а.


Расположение же трехъярусное представится в общем виде так:


aaa.


Определим, при каком значении а последнее расположение изображает большее число, нежели первое. Так как оба выражения представляют степени с равными целыми основаниями, то бóльшая величина отвечает большему показателю. Когда же


аа > 11а?


Разделим обе части неравенства на а. Получим:


аа–1 > 11.


Легко видеть, что аа–1 больше 11 только при условии, что а больше 3, потому что


44–1 > 11,


между тем как степени


32 и 21


меньше 11.

Теперь понятны те неожиданности, с которыми мы сталкивались при решении предыдущих задач: для двоек и троек надо было брать одно расположение, для четверок и бóльших чисел – другое.

Четырьмя единицами

ЗАДАЧА

Четырьмя единицами, не употребляя никаких знаков математических действий, написать возможно большее число.


РЕШЕНИЕ

Естественно приходящее на ум число – 1111 – не отвечает требованию задачи, так как степень


1111


во много раз больше. Вычислять это число десятикратным умножением на 11 едва ли у кого хватит терпения. Но можно оценить его величину гораздо быстрее с помощью логарифмических таблиц.

Число это превышает 285 миллиардов и, следовательно, больше числа 1111 в 25 с лишним млн раз.

Четырьмя двойками

ЗАДАЧА

Сделаем следующий шаг в развитии задач рассматриваемого рода и поставим наш вопрос для четырех двоек.

При каком расположении четыре двойки изображают наибольшее число?


РЕШЕНИЕ

Возможны 8 комбинаций:



Какое же из этих чисел наибольшее?

Займемся сначала верхним рядом, т. е. числами в двухъярусном расположении.


Первое – 2222, – очевидно, меньше трех прочих.

Чтобы сравнить следующие два —


2222 и 2222,


преобразуем второе из них:


2222 = 222-11 = (222)11 = 48411.


Последнее число больше, нежели 2222, так как и основание, и показатель у степени 48411 больше, чем у степени 2222.

Сравним теперь 2222 с четвертым числом первой строки – с 2222. Заменим 2222 бóльшим числом 3222 и покажем, что даже это большее число уступает по величине числу 2222. В самом деле,


3222 = (25)22 = 2110


– степень меньшая, нежели 2222.

Итак, наибольшее число верхней строки – 2222. Теперь нам остается сравнить между собой пять чисел – сейчас полученное и следующие четыре:



Последнее число, равное всего 216, сразу выбывает из состязания. Далее, первое число этого ряда, равное 224 и меньшее, чем 324 или 220, меньше каждого из двух следующих. Подлежат сравнению, следовательно, три числа, каждое из которых есть степень 2. Больше, очевидно, та степень 2, показатель которой больше. Но из трех показателей


222, 484 и 220 + 2 (= 210 · 2 · 22 ≈ 106 · 4)


последний – явно наибольший.

Поэтому наибольшее число, какое можно изобразить четырьмя двойками, таково:


Не обращаясь к услугам логарифмических таблиц, мы можем составить себе приблизительное представление о величине этого числа, пользуясь приближенным равенством


210 ≈ 1000.


В самом деле,


Итак, в этом числе – свыше миллиона цифр.

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии