В «Ростки» просто играть, но сложно перебрать все варианты. Анализ игры, начинающейся с шести точек, занял у Дениса Моллисона 47 страниц. Никто не превысил эту планку до 1990 года, когда компьютер Bell Labs перебрал все варианты игры, начинающейся с 11 точек. На момент написания этой главы перебраны все варианты для игры, начинающейся с 40 точек, хотя Конвей перед кончиной в 2020 году скептически высказался на сей счет: «Вы поверите, услышав, что кто-то изобрел машину, которая может сочинить пьесу, достойную пера Шекспира? Это слишком сложно».
Отпугнула ли эта сложность игроков-любителей? Ничуть.
«На следующий день после того, как проросли "Ростки", – пишет Конвей, – в них стали играть все подряд. За чаем и кофе небольшие компании не могли взгляда оторвать от нелепых или фантастических вариантов развития игры… Общему поветрию поддались и секретари… Рисунки с "Ростками" можно было обнаружить в самых неожиданных местах… Даже мои дочки, которым три и четыре года, играли в них, хотя обычно я выигрывал».
Потому что среди разделов современной математики топология – одна из наиболее (1) динамичных, (2) причудливых, (3) полезных и (4) красивых.
Эпитетов много, так что разберем их по порядку.
Топология динамична.
Топологи живут в изменчивом мире растягивающейся резины, расплавленного металла и тающего мороженого. Они постоянно ищутНаиболее известный инвариант –
Это уравнение верно на любом этапе игры для всех возможных сценариев, от простейшего до сложнейшего, независимо от того, начинаете ли вы с двух точек или с двух миллионов. В любой ситуации количество точек плюс количество замкнутых областей будет равно количеству линий, соединяющих точки, плюс количество отдельных фигур[12]
.Это типично для топологии: в необузданно меняющемся мире мы находим стройные закономерности.
Топология причудлива.
Вот забавное открытие Джона Конвея. Если количество ходов минимально, то в конце концов вы получите (грубо говоря) одну из этих фигур:В классическом пособии «Выигрышные стратегии математических игр» объясняется, что окончательная конфигурация «будет представлять собой одно из этих насекомых (возможно, вывернутое наизнанку), к которому присосалось произвольное количество вшей (к некоторым вшам могут присосаться другие)».
В общем, вшей довольно много. Причем одни конфигурации, по замечанию Конвея, «вшивее» других.
Топология полезна.
Несмотря на балаган с уховертками и вшами, топология помогает разобраться с самыми разными вещами, от запутанности ДНК до запутанности социальных сетей, не говоря уже о космологии и квантовой теории поля.Рассмотрим знаменитую топологическую проблему:
Этот вопрос тревожит инженеров, сопоставляющих электрические схемы, компьютерщиков, кодирующих визуальную информацию, и химиков, ищущих соединения в базах данных. По сути дела, все эти серьезные люди играют в свои версии «Ростков».
Топология красива.
Для многих знакомство с топологией начинается с ленты Мёбиуса. Возьмите полоску бумаги, перекрутите ее и склейте концы.У ленты Мёбиуса всего одна поверхность: нет дихотомии «внутри» и «снаружи». Если вы решите использовать ее в качестве браслета и попытаетесь покрасить внутреннюю сторону в синий, а внешнюю в красный, ничего не получится. И это лишь одна из странностей. Что будет, если разрезать ленту Мёбиуса вдоль? А если попытаться разрезать ее на три части?
Математик Дэвид Ричесон в книге «Жемчужина Эйлера» подсчитал, сколько медалей Филдса (самая престижная награда в области математики) досталось топологам. «Из 48 лауреатов, – пишет он, – примерно треть были награждены за работы в области топологии, и еще больше – за вклад в тесно связанные с ней области».
Если красота – дочь сложности и простоты, то «Ростки» – настоящее дитя любви.
Сорняки.
Автор – Владимир Игнатович. Игроки могут рисовать на своей линии одну точку, две или ни одной.Набери очки.
Автор – Уолтер Джорис. Правила те же, что в «Ростках», но ведется подсчет очков. Если в результате вашего хода образуется замкнутая область, пометьте ее инициалами или цветом и подсчитайте количество точек на границе области (одна точка – одно очко). Рисовать новые линии внутри этой области запрещено. Когда все ходы будут исчерпаны, побеждает тот, у кого больше очков[13].