одного из событий А или В, дважды учитывает mAB
исходов, благоприятствующих одновременному появлению А и В. Поэтому из общего числа исходов n появлению событий А или В (или обоих вместе) будут благоприятствовать mA + mB - mAB исходов, на основании чего имеемЭта формула получена из каких-либо ограничений относительно характера событий А и В:
для зависимых событий
P(A ∪ B) = P(A) + P(B) -P(A)PA
(B),для независимых событий
P(A ∪ B) = P(A) + P(B) -P(A)(B).
10. Независимость и несовместность. При использовании приведенных соотношений необходимо четко понимать смысл таких свойств событий, как независимость и несовместностью. Условиями независимости событий можно рассматривать каждое из соотношений
P(A ∩ B) = P(A) + P(B); PA
(B) = P(B)Так, при бросании двух игральных костей вероятности событий А(дубль) и В(меньше 6 очков) равны соответственно P(A) = 6/36 = 1/6 и P(B) = 10/36 = 5/18. Одновременному появлению этих событий соответствует подмножество A ∩ B = {(1,1),(2,2)} и его вероятность P(A ∩ B) = 2/36=1/18. Так как P(A ∩ B) B≠ P(A)P(B), то рассматриваемые события являются зависимыми. С другой стороны, событие В при условии наступления события А определяется как подмножество {(1,1),(2,2)} основного множества {(1,1),(2,2), (3,3),(4,4}{(5,5),(6,6)}, и PA
(B) = 2/6 = 1/3, т.е. не совпадает с P(B)= 5/18. По соответствующим формулам имеем:P(A ∩ B) = P(A)PA
(B) = 1/6 · 1/3 = 1/18;P(A ∪ B) = P(A) + P(B) — P(A)PA
(B) = 1/6 + 5/18 -1/6 · 1/3 = 7/18.Очевидно, те же результаты получим, если пример В в качестве дополнительного условия для А. Так как множество {(1,1),(1,2),
- 80 -
(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)}, соответствующее событию В, служит основным для события А, то
PB
(A) = 2/10 = 1/5,и следовательно получаем:
P(A ∩ B) = P(B)PB
(A)= 5/18 · 1/5 = 1/18;P(A ∪ B) = P*A) + P(B) — P(B)PB
(A) = 1/6+5/18-5/18· 1/5=7/18.Общее условие несовместности событий выражается как
P(A ∩ B) = 0,
что соответствует A ∩ B = ∅. Так, в рассматриваемом примере A ∩ B = {(1,1),(2,2)} ≠ ∅, следовательно, события А и В совместны.
Независимые события А и В при ненулевых вероятностях P(A) и P(B) всегда совместны. Действительно, из соотношения P(A ∩ B) = P(A)(B) имеем P(A ∩ B) ≠ 0, а значит и A ∩ B ≠ ∅, что свидетельствует о совместности независимых событий. Однако совместность событий не обязательно влечет их независимость. Из условия A ∩ B ≠ ∅ при P(A ∩ B) ≠ 0 следует лишь, что P(A ∩ B) ≠ 0 и условная вероятность PA
(B) ≠ 0. Но может иметь место неравенство PA(B) = P(B), что означает зависимость рассматриваемых совместных событий.Зависимые события А и В при ненулевых вероятностей P(A) и P(B) могут быть как совместными, так и несовместными. В первом случае A ∩ B ≠ ∅, и поэтому условные вероятности PA
(B) и PB(A) не равна нулю, т.е. одно из событий может наступить при условии, что произошло другое событие. Во втором случае A ∩ B = ∅, следовательно, условные вероятности зависимых и несовместных событий PA(B) = PB(A) = 0. Это значит, что пир наступлении события А событие В произойти уже не может, а наступлении события В не может произойти событие А. В то же время из несовместности событий (A ∩ B = ∅) следует их зависимость, что выражается равенством нулю условных вероятностей PA(B) и PB(A). Иначе говоря, если события А и В несовместны, то при наступлении одного из них другое произойти не может, т.е. несовместные событие не могут быть независимыми.Несовместность совокупности событий A1
, A2, ..., An, следует из их попарной несовместимости, т.е. из условияAi
∩ Aj = ∅ (i,j = 1,2,..., n; i ≠ j).- 81 -
Однако полная независимость совокупности событий, вообще говоря, еще не определяется их попарной независимостью. Кроме условий
P(Ai
∩ Aj) = P(Ai)P(Aj) (i,j = 1,2,..., n; i ≠ j),должны выполняться также аналогичные условия для любых сочетаний по 3, 4, ... , n событий. Например, для трех событий условие полной независимости выражается системой соотношений:
P(A1
∩ A2) = P(A1)P(A2);P(A1
∩ A3) = P(A1)P(A3);P(A2
∩ A3) = P(A2)P(A3);P(A1
∩ A2 ∩ A3) = P(A1)P(A2)P(A3).Невыполнение хотя бы одного из этих соотношений свидетельствовало бы о том, что события A1
, A2 и A3 в совокупности зависимы. На практике, однако, попарная независимость обычно влечет за собой и независимость в совокупности.Задачи и упражнения
1. Какова вероятность угадать все шесть номеров (из 49) в спортлото?
2. Из урны, содержащей 8 белых и 12 черных шаров, вынимают один шар. Какова вероятность того, что он будет белым; что он будет черны?
3. Найдите на основе рассмотрения множества событий при бросании двух игральных костей (каждая кость имеет шесть равноправных граней, пронумерованных от 1 до 6) вероятность следующих событий:
а) на одной кости четыре очка, а на другой — меньше четырех;
б) на одной кости число очков вдвое больше, чем на другой;
в) сумма очков меньше пяти;
г) сумма очков больше восьми.