Читаем Математический аппарат инженера полностью

9. Неполные автоматы. В практике встречаются случаи, когда не каждый символ из входного алфавита может быть подан на автомат, находящийся в определенном состоянии (ограничения на входе), или его выходы при некоторых входных воздействиях не представляют интереса (неопределенность выходов). Тогда приходится иметь дело с неполными автоматами, общая таблица переходов которых содержит прочерки вместо состояний и выходов для запрещенных входов, а также вместо неопределенных выходов.

Например, таблица для неполного автомата, граф которой изображен на рис. 241, a, имеет следующий вид:


- 577 -


Здесь вход 0 в состояниях 1 и 5, а также вход 1 в состояниях 0 и 5 являются запрещенными. Кроме того, в состоянии 3 при воздействии 0 и в состоянии 4 при воздействии 1 выходы не определены.

Входная последовательность называется допустимой для автомата в состоянии si, если она не нарушает ограничений на входе ни в каком состоянии автомата М и порождаемый ею выход определен на заключительном такте. На других тактах входной последовательности выходы могут быть и не определены, но последовательность состояний обязательно должна существовать. Например, для приведенного автомата в состоянии 0 допустимая входная последовательность {0, 1,0} порождает последовательность состояний {1, 4, 5} и заключительный выход 0. В то жевремя последовательность {0, 1, 1} не допустима, так как заключительный выход не определен.

Число состояний неполного автомата иногда можно сократить изложенными в предыдущих разделах методами, произвольно интерпретируя прочерки в его таблице и рассматривая его как полный автомат. Однако такой путь не гарантирует получения минимальной формы.

Сокращенная форма неполного автомата М – это такой автомат М', который по отношению к допустимым для М входным последовательностям ведет себя на выходах так же, как и исходный автомат М, но имеет меньшее число состояний. Автомат М' квазиэквивалентен автомату М. Отношениеквазиэквивалентности рефлексивно и транзитивно, но не симметрично, т. е обладает всеми свойствами отношения включения. Поэтому говорят также, что М' включает М и записывают М ⊂М'. При этом из М ⊂М' вовсе не следует М' ⊂М, что иногда выражают словами: М' делает столько же и, быть может, больше, чем М.

10. Минимизация неполных автоматов. Эта задача сводится к поиску квазиэквивалентного автомата, который имеет наименьшее число состояний, и решается следующим образом.

Сначала на множестве состояний S = {σ1, σ2, ..., σr} исходного автомата определяется отношение совместимости. Состояния σi и σj называют совместимыми, если любая допустимая для этих состояний входная последовательность не порождает различных заключительных выходов при начальных состояниях σi и σj автомата. Отношение совместимости рефлексивно и симметрично, однако оно не обязательно транзитивно. Отсюда следует, что совместимость является отношением толерантности. Все совместимые между собой состояния объединяются в классы толерантности S'0, S'1, ..., S'w, которые образуют некоторое покрытие множества состояний

Для определения совместимых состояний можно воспользоваться методом, аналогичным изложенному для полных автоматов. Исходная таблица содержит пары таких состояний, при которых для любого допустимого


- 578 -


символа отсутствуют различные выходы. Клетки, соответствующие запрещенным входам для данной пары состояний, заполняются прочерком и при исключении пар, как это описано в (8), не учитываются. Так, для автомата, заданного табл. 12, имеем:

Отмеченная на первом шаге пара {0, 2} является единственной несовместимой парой в таблице, так как она не содержится ни в каких других строках. Следовательно, всенеотмеченные пары являются совместимыми. Построив матрицу толерантности для совместимых пар и переставив в ней строки и столбцы, имеем:

Отсюда выделяем кассы толерантности S'0= {0, 1, 4, 5}, S'1= {0, 3, 4, 5} S'2= {2, 3, 4, 5}, объединяющие совместимые между


- 579 -

собой состояния. Здесь, в частности, можно убедиться в том, что совместимость не обладает свойством транзитивности. Например, пары состояний {0, 1} и {0, 3} совместимы, но состояния 1 и 3 не входят в один и тот же класс толерантности и, следовательно, они несовместимы.

Из определения совместимости и способа получения классов толерантности следует, что при воздействии любого не запрещенного входного символа автомат из совместимых состояний переходит в одно и то же или в совместимые состояния, а выходы (если они определены) при этом будут одинаковы.

Перейти на страницу:

Похожие книги

Оружие современной пехоты. Иллюстрированный справочник Часть I
Оружие современной пехоты. Иллюстрированный справочник Часть I

В книге в популярной форме рассказано о современной системе вооружения пехоты, об истории и путях ее дальнейшего развития, а также об основах устройства оружия. Для более подробного рассмотрения автором отобраны самые распространенные образцы. Издание подготовлено для всех интересующихся историей военной техники и современным боевым оружием. Прим. OCR: Для популярного справочника очень доступно и одновременно подробно рассмотрены варианты оружейной автоматики, типы затворов и т.п. Достаточно, что бы не считать внешнее сходство оружия доказательство его копирования. Качество фотоматериалов к сожалению очень низкое – лучше скана в сети не нашлось.

Семен Леонидович Федосеев

Военное дело / Военная история / Справочники / Технические науки / Военная техника и вооружение / Образование и наука / Словари и Энциклопедии