Читаем Математика для гиков полностью

Чтобы понять теорему Гаусса, представьте человека, которого уменьшили до одного дюйма и поместили на поверхность цилиндра. Если человек начинает идти, он может найти множество маршрутов, которым он может следовать. Например, он может пройти вдоль верхушки цилиндра по прямой линии. Или он может пройти вдоль изогнутой части цилиндра по кругу, пока не вернется в отправную точку. (Нам придется представить, что этот человек надел уж очень липкие ботинки.) Он также мог бы идти по спирали, кружась вокруг цилиндра и одновременно продвигаясь вдоль его длины. Теорема Гаусса гласит, что можно измерить кривизну этого цилиндра, используя все эти маршруты, их нужно умножить друг на друга, и получится значение. Плоская поверхность имеет нулевую кривизну – в конце концов, она плоская, – а криволинейная траектория имеет положительную кривизну. (Вогнутая кривая – которая выгнута внутрь – будет иметь отрицательную кривизну.) Когда вы умножаете кривизны, то в итоге умножаете положительное значение на ноль, в результате чего получается ноль (так как любое число, умноженное на ноль, дает ноль). Получается, что цилиндр имеет нулевую гауссовскую кривизну.

В теореме Гаусса также говорится о поверхности фигуры. Утверждается, что вы можете сгибать и растягивать поверхность и она будет иметь ту же гауссовскую кривизну, что и изначально, до тех пор, пока вы не нарушите ее целостность. Поэтому неважно, как сильно вы будете мять или деформировать цилиндр, гауссовская кривизна от этого не изменится.

Это приводит нас к пицце. Если вы когда-нибудь пытались держать большой кусок пиццы ровно в руке, особенно если на этом куске много расплавленного сыра и пеперони, то вы знаете, что конец пиццы всегда падает и вам становится трудно его есть. С другой стороны, если вы сложите кусок продольно, то конец вовсе не падает, а смотрит прямо, а начинка остается там, где ей и место. В чем же дело? Итак, если вы посчитаете кривизну не согнутого куска пиццы, то получите ноль. (Любые возможные траектории, по которым может пройти однодюймовый человек на поверхности куска являются плоскими.) А это значит, что вы можете сколько угодно двигать или сгибать этот кусок, но его кривизна будет все равно равна нулю.



А теперь посмотрите на кусок пиццы, конец которого смотрит вниз. Траектория от корочки до конца будет изогнутой, а траектория от одной стороны до другой – прямой. Теперь если мы сложим кусок, то траектория от одной стороны до другой будет кривой, а от корочки до конца – прямой.

Что же все это значит? Неважно, как согнут кусок, одна возможная траектория должна быть прямой (так как плоская кривая имеет нулевую гауссовскую кривизну, и нам нужен ноль в расчетах, чтобы получить в результате ноль). Если траектория между сторонами плоская, то траектория от начала до конца будет кривой. Если траектория от начала до конца плоская, то траектория между сторонами будет кривой.

Вернемся к изначальной задаче: мы не можем аккуратно обернуть арбуз бумагой или разровнять кожуру от грейпфрута потому, что плоские и круглые объекты имеют разную гауссовскую кривизну. Так что в следующий раз, когда будете заказывать пиццу, подумайте о гауссовской кривизне и смело сгибайте ваши куски пиццы.

Карл Гаусс

Карл Гаусс был вундеркиндом. Однажды в школе его попросили сложить все числа от 1 до 100. Сообщается, что он нашел решение за считанные секунды. Он предложил разбить сумму на 50 пар чисел – 1 и 100, 2 и 99, 3 и 98 и т. д., сумма каждой такой пары составляла 101. Поэтому результат составлял 101 × 50, или 5050.

1.23. Геодезические купола

Математическое понятие: геодезический купол

Вы когда-нибудь были в тематическом парке Epcot и стояли под гигантской сферой под названием «Космический корабль “Земля”»? Если да, то вы знакомы со структурой геодезического купола. Геодезические купола состоят из треугольных деталей, расположенных рядом друг с другом так, что вершина одной из них находится рядом с основанием другой. Таким образом, вместо гладкой сферы или купола мы получаем слегка угловатый геодезический купол (напоминающий диско-шар).

Геодезические сферы и купола (разрезанные напополам сферы) чрезвычайно легкие и прочные, они стали популярными в середине 1900-х благодаря Бакминстеру Фуллеру, инженеру, который хотел с помощью изобретений решить человеческие проблемы. Создание структуры из треугольных деталей дает более стабильную конструкцию, нежели из квадратных. Фуллер представлял геодезические купола как эффективное, доступное жилье. Экономия возникала бы из формы: сферы покрывают определенное пространство минимальной площадью поверхности, тем самым в теории снижая затраты на строительные материалы. Открытое внутреннее пространство также позволяет воздуху легко перемещаться, тем самым потенциально сокращая затраты на обогрев и кондиционирование помещения. На самом деле, геодезические купола – это воплощение сентенции Фуллера «делать больше с меньшими затратами».

Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Как я воевал с Россией
Как я воевал с Россией

Уинстон Черчилль — «имя Англии» XX века, являлся самым ярким представителем английской политики в двадцатом столетии. Одним из ее направлений была борьба против России с целью не допустить нашу страну в число великих держав или, по крайней мере, ослабить русское влияние в мире.В своих произведениях У. Черчилль достаточно полно и откровенно описал все стороны этой антирусской деятельности. Двуличная позиция Англии в отношениях с Россией в годы Первой мировой войны, откровенно враждебное отношение к РСФСР и СССР, военные и шпионские операции против советской державы в 1920-е–1930-е гг., попытки направить первый германский удар на Советский Союз — все это нашло отражение в книге У.Черчилля, представленной вашему вниманию.Кроме того, в ней рассказывается о политике Черчилля в годы Второй мировой войны, когда союзническая помощь Советскому Союзу со стороны Англии сопровождалась стремлением затянуть военные действия на Восточном фронте, чтобы обескровить СССР. Наконец, здесь говорится и о начале «холодной войны», в которой У. Черчилль сыграл ведущую роль.Книга содержит множество интересных подробностей, неожиданных фактов, значимых деталей от человека, входившего в высшие круги английского «истеблишмента».

Уинстон Спенсер Черчилль , Уинстон Черчилль

Биографии и Мемуары / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Педагогика / Образование и наука / Документальное