Не надо непременно быть почтальоном или врачом, чтобы выполнять подобные подвиги, конечно, того не ведая. Я живу во 2-м этаже, в квартире, куда ведет лестница с 20 ступеньками - число, казалось бы, весьма скромное. Ежедневно мне приходится взбегать по этой лестнице раз 5, да еще посещать двоих знакомых, живущих, скажем, на такой же высоте. В среднем можно принять, что я поднимаюсь ежедневно 7 раз по лестнице с 20 ступенями, то есть взбегаю вверх каждый день по 140 ступеней. Сколько же это составит в течение года?
140 x 360 = 50400.
Итак, ежегодно я поднимаюсь более чем на 50.000 ступеней. Если мне суждено дожить до 60-летнего возраста, я успею подняться на вершину сказочно высокой лестницы в три миллиона ступеней (450 км)!
Как изумился бы я, если бы ребенком меня подвели к основанию этой уходящей в бесконечную даль лестницы и сказали, что некогда я, быть может, достигну ее вершины… На какие же исполинские высоты взбираются те люди, которые по роду своей профессии только и делают, что поднимаются на высоту, - например служители при лифтах? Ктото подсчитал, что, например, служитель при лифте одного из Нью-Йоркских небоскребов совершает за 15 лет службы подъем до высоты… Луны!
Пахари-путешественники
Взгляните на странный рисунок, приведенный на следующей странице. Кто те сказочные пахари-богатыри, что проводят борозды кругом земного шара?
Вы полагаете, рисунок - создание чересчур разыгравшейся фантазии художника? Нисколько: художник лишь изобразил наглядно то, о чем скажут вам достоверные арифметические подсчеты, если вы дадите себе труд их произвести. Каждый пахарь проходит со своим плугом в течение нескольких лет (4-6) такое расстояние, которое равно окружности земного шара. Выполнение этого неожиданного по своим результатам арифметического подсчета предоставляю читателю произвести самостоятельно.
Незаметное путешествие на дно океана
Весьма внушительные путешествия выполняют обитатели подвальных помещений, служители таких же складов и т. п. Много раз в день сбегая вниз по ступенькам маленькой лестницы, ведущей в погреб, они в течение нескольких месяцев проходят расстояние в целые километры. Нетрудно рассчитать, во сколько времени мальчик-служитель подвального склада проходит, таким образом, вниз расстояние, равное глубине океана. Если лестница углубляется, скажем, всего на 2 м, и мальчик сбегает по ней ежедневно всего 10 раз, то в месяц он пройдет вниз расстояние в 30 х 20 = 600 м, а в год 600 х 12 = 7200 м - более 7 км. Вспомним, что глубочайшая шахта простирается в недра Земли всего на 2 километра!
Итак, если бы с поверхности океана вела на его дно лестница, то любой служитель подвального торгового помещения достиг бы до дна океана в течение одного года (наибольшая глубина Тихого океана - около 9 км).
Путешествующие стоя на месте
Последние страницы этой книги мне хочется посвятить ее первым читателям, без деятельного сотрудничества которых она не могла бы появиться в свет. Я говорю, конечно, о наборщиках. Они также совершают далекие арифметические путешествия, не выходя из пределов наборной, даже стоя неподвижно у наборных касс. Проворная рука труженика свинцовой армии, скользя ежесекундно от кассы к верстатке, проходит за год огромное расстояние. Сделайте подсчет. Вот данные: наборщик набирает в течение рабочего дня 8000 букв, и для каждой буквы должен переместить руку туда и назад на расстояние, в среднем, около полуметра. В году считайте 300 рабочих дней.
2 x 0,5 x 8000 x 300 = 2400000 м, т. е. 2400 км.
Значит, за 16-17 лет работы даже и наборщик, не отрывающийся от кассы, совершает кругосветное путешествие. «Неподвижный кругосветный путешественник!» Это звучит оригинальнее, чем «путешественник пешком».
Не найдется человека, который так или иначе не совершил бы в этом смысле кругосветного путешествия. Можно сказать, что замечательным человеком является не тот, кто проделал кругосветное путешествие, а тот, кто его не совершил. И если кто-нибудь станет уверять вас, что этого не сделал, вы, надеюсь, сможете «математически» доказать ему, что он не составляет исключения из общего правила.