Не существует квадратов 2-го порядка: четырехклеточный квадрат не демонстрирует ничего удивительного при сложении чисел 1, 2, 3 и 4. Агриппа дал этому обстоятельству оригинальное объяснение: число 2 было проклято из-за действий первых двух людей, Адама и Евы, что сделало квадрат 2-го порядка невозможным. Другое его «доказательство» не уступало первому: он считал, что четыре элемента — Земля, Воздух, Огонь и Вода, соответствующие здесь числам от 1 до 4 — неадекватны. Агриппа
Теперь самое время провести различие: есть два вида квадратов, которые можно условно назвать «волшебными» и «магическими».
Квадраты второго типа, настоящие
Среди множества людей, очарованных волшебными/магическими квадратами, были художник Альбрехт Дюрер (1471–1528) и американский политик Бенджамин Франклин (1706–1790). Франклин, служивший в конце 1730-х, задолго до своего политического взлета, секретарем в Пенсильванской ассамблее, скуки ради занимался составлением квадратов [109]
. Хотя оба, вероятно, наслаждались этими головоломками, Франклин (который был масоном) и Дюрер, конечно же, интересовались и метафизическими аспектами.Квадрат Юпитера появляется на гравюре Дюрера «Меланхолия» — или почти появляется, поскольку Дюрер позволил себе здесь некоторые вольности (рис. 25, 26, 27). Зачем использовать квадрат Юпитера, если меланхолия метафизически соответствует планете Сатурн? Быть может, исцеления ради, Юпитер (он же Иов, как в слове «веселый» [110]
) должен был противодействовать «сатурнальной» угрюмости?Картина «Меланхолия» наполнена оккультными ассоциациями, над которыми до сих пор бьются историки искусств: сложное геометрическое тело, лестница в семь ступеней, компас (показывающий 51°25′ — значение, используемое для создания семиконечной звезды или разделения круга на 7) и другие реквизиты (рис. 25). Известно, что Дюреру нравилось создавать визуальные головоломки, чтобы с их помощью испытывать и забавлять своих друзей. Вероятно, и «Меланхолия» стоит в том же ряду.
Его решение развернуть квадрат Юпитера на 180° (рис. 26, 27), возможно, было обусловлено спецификой процесса печати. Работавшие в технике гравюры художники, для получения нормального оттиска с вытравленного на пластине изображения, должны были создавать свои композиции в зеркальном виде. Это означает, что любой текст и числа должны были быть первоначально написаны наоборот. Быть может, работая над размещением чисел на гравировальной доске, Дюрер захотел увековечить дату создания картины? Таким образом, повернув традиционный квадрат, он получил искомый 1514 год, прописавшийся в нижнем ряду. Есть еще одна числовая комбинация, о которой Дюрер, безусловно, знал: каждая строка квадрата Юпитера при сложении дает 34, а в 1514 году Альбрехту Дюреру исполнилось тридцать четыре года.
Мы используем квадрат Дюрера для исследования возможностей некоторых квадратов — волшебных или магических. В квадрате 4-го порядка имеется шестнадцать ячеек, содержащих числа от 1 до 16. Принципиальным моментом здесь является местоположение каждого числа.
Рисунок 28 демонстрирует математику квадрата Юпитера.
• А, В и С. Строки, столбцы и диагонали, как в квадрате Сатурна. Каждое из этих сочетаний в сумме дает 34.
• D. То же происходит и с четырьмя углами: 16+13 + 4+1 =34, и
• Е. С четырьмя центральными ячейками: 10+11 + 6 + 7 = 34.
• F. И даже с парами внутренних чисел, расположенных вдоль внешних краев:
3 + 2 + 15 + 14 (вдоль верхнего и нижнего края) = 34 5 + 9 + 8 + 12 (вдоль левого и правого края) = 34
Итак, вот уже четырнадцать различных способов сложения до 34, возможных в этом квадрате, но есть и другие.