Давайте взглянем на пифагорейское учение посредством самого треугольника Пифагора. Эта специфическая фигура (рис. 71) ценилась как высшее выражение порядка и гармонии. В нем есть
1 Вновь «семя». Хотя пифагорейцы и не считали 1 числом, они видели в нем генератора всех чисел.
2 Первое женское число, ставшее символом выбора и способности к делению.
3 Первое мужское число, символизирующее гармонию, посредством комбинации 1 и 2.
4 Число, представляющее справедливость и четыре направления и основание каждой стороны Текрактиса.
5 Комбинация женского и мужского, 2 и 3 символизируют любовь и союз, как в человеческом плане, так и в философских понятиях синтеза.
6 Площадь треугольника из шести квадратов выражает первое «совершенное» число.
Совершенными числами считаются числа, равные сумме всех меньших чисел, на которые они раскладываются — 1 +2 + 3 = 6 — мы видим, что 6 может быть умножено и без остатка разделено на эти самые числа: 1х2хЗ = 6, и 6: 3 = 2.
Вернемся к 3-4-5-стороннему треугольнику Пифагора. Есть простой способ воочию убедиться в том, что он содержит шесть квадратов. Возьмите карточку из библиотечного каталога, ее размер 3 на 4 дюйма, и расчертите ее на двенадцать 1-дюймовых квадратов. Затем разрежьте ее по диагонали пополам, как показано на рисунке 72. Внимательно рассмотрите любой из полученных треугольников. В отличие от множества других объектов и их площадей, здесь все наглядно: можно увидеть, как каждый фрагмент квадрата подходит к другому фрагменту, создавая единое целое, то есть образуя шесть равных 1-дюймовых квадратов. Как показано на рисунке 73, фрагменты квадратов 1 и 12 точно дополняют друг друга, образуя целостную форму, равно как 2 с 11 и 6 с 7. Кроме того, каждая из этих пар при сложении дает сумму, равную 13. Возьмите другую диагональ, и соответственные квадраты — 4 и 9, 3 и 10, 6 и 7 — по-прежнему будут давать 13 при сложении. Даже если вы пронумеруете квадраты вертикально, по колонкам, а не по строкам — результат останется неизменным.
У этого треугольника есть и другая особенность: сумма квадратов двух его коротких сторон (3 и 4) равна квадрату его длинной стороны (5). Это утверждение прекрасно проиллюстрировано на рисунке 74. В мире «настоящей» математики данная квадратичная последовательность записывается так: а2
+ Ь2 = с2 или, в данном случае, З2 + 42 = 52. Для такого ненавистника математики, как я, менее пугающей выглядит следующая формула: ЗхЗ + 4х4 = 5х5. Удивительно! Эти числа —9, 16 и 25 — вновь отсылают нас к точечным квадратам с рисунка 68, помещенным в начале этой части.Хотя прямоугольник 3 на 4, с которого мы начали, не таит в себе, подобно магическим квадратам, каких-либо математических сюрпризов, тем не менее, из сложения двенадцати записанных в него чисел образуется сумма 78, что соответствует количеству карт в колоде Таро: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10+11 +12 = 78.
Запомните этот прямоугольник 3 на 4 и, в особенности, треугольник Пифагора, который мы из него получаем. Мы еще встретимся с ним.
Глава № 9
Фибоначчи, золотое сечение и пентакль
Последовательность Фибоначчи — не просто случайная числовая схема, придуманная этим итальянским математиком. Она является плодом осмысления пространственных отношений, имеющих место в природе и впоследствии получившими название золотое сечение.