Читаем Математика для взрослых. Лайфхаки для повседневных вычислений полностью

Вспоминаем, что 4 – это множитель для содержимого скобок и умножение нужно выполнить прежде, чем от них избавляться. Получаем 124 + 6 − 15. Следовательно, миссис Бомонт потратит 115 фунтов.

Остался последний вопрос: если ее подруги идут на вечеринку в леопардовых трико и красных шляпах, что же наденет сама миссис Бомонт? Ответ прост: себе костюм она купила в булочной.


Грубый подсчет

Прежде чем приступать к расчетам, связанным с большими числами, имеет смысл сделать грубую прикидку результата. Особенно это важно при использовании калькулятора, ведь нажать не ту кнопку проще простого.

На футбольном матче в Йорке[6] присутствовали 38 452 зрителя, каждый из них заплатил за вход 27,50 фунта (эти данные позаимствованы из снов футбольного менеджера). Четверо контролеров (по одному на каждый вход) решили выяснить, какой должна быть общая выручка, и посчитали на калькуляторах: 38 452 × 27,50.

Увы, у них получилось четыре разных ответа:

а) 105 930 фунтов

б) 1 057 430 фунтов

в) 3 847 950 фунтов

г) 105 734 000 фунтов


Как думаете, кто посчитал правильно?

Округление

Во-первых, упростим числа, сделав их более удобными для вычислений, и для этого их грубо округлим. Оставим только первую цифру каждого числа, а остальные заменим нулями: например 38 452 превратится в 30 000. Однако чтобы приблизительный результат вышел точнее, будем прибавлять к первой цифре 1, если вторая цифра равна или больше пяти. В данном случае вторая цифра 8, поэтому округлим 38 452 до 40 000. Представив эти числа отмеченными на линейке, мы убедимся, что 38 452 и впрямь ближе к 40 000, чем к 30 000:



27,50 фунта можно было бы округлить до 20, но 7 больше 5, поэтому округляем до 30.

Годится. Теперь умножим 40 000 × 30. По сути, это 4 × 3 плюс общее количество нулей. Всего нулей пять, и наш приблизительный ответ равен 1 200 000. Ближе всего к этому числу вариант б) 1 057 430, так что, скорее всего, именно он правильный.

А вот где ошиблись остальные три контролера: а) пропущена цифра 4, в) вместо кнопки × на калькуляторе нажата кнопка +, г) в числе 27,50 пропущена запятая.


Начиная с этого момента некоторые сложные выражения будут отмечаться таким значком с подсказкой, как можно грубо оценить результат.

Дроби

В главе, посвященной делению, мы либо использовали числа, которые делятся полностью, либо оставляли неразделенный остаток. Когда числа необходимо делить на части без остатка, все становится гораздо любопытнее. В таком случае понадобятся дроби, простые или десятичные. Иногда лучше иметь дело с одним видом дробей, иногда с другим – все зависит от ситуации.

Простая дробь – это непосчитанная операция деления. Например, выражение 4 ÷ 7 можно записать как 4/7 (четыре седьмых). У этого подхода есть как приятная сторона – не надо выполнять деление, так и неприятная – вместо одного числа придется иметь дело с двумя.

Сокращение дробей

Предположим, у вас есть пицца с пепперони, разрезанная на восемь частей. Это можно записать как 1 ÷ 8, то есть каждая часть составляет 1/8 (одну восьмую) от всей пиццы. Если вы съедите шесть кусков, получится, что вы съели 6/8 (шесть восьмых) пиццы.

6/8 – вполне нормальная дробь, но вы вряд ли где-нибудь ее встретите, и вот почему:



Из рисунка следует, что 6/8 – то же самое, что и 3/4, поскольку две восьмые вместе составляют одну четверть, а значит, шесть восьмых составят три четверти.

Если у вас под рукой нет пиццы, посмотрим, как это происходит с числами. Начнем с дроби 6/8 и постараемся отыскать число, на которое делятся обе ее части, верхняя и нижняя.


Если умножить или разделить верхнюю и нижнюю часть дроби на одно и то же число, значение дроби не изменится.

Звучит немного странно, однако все, что мы сейчас сделали, – это разделили верхнее и нижнее число дроби на одно и то же число 2, превратив 6/8 в 3/4. Если же вы решите умножить верхнее и нижнее число дроби, скажем на 6, по какой-то непонятной причине (скоро мы увидим, в чем она заключается), то получится 3/4 = 18/24.

И это совершенно нормально, ведь если ваша пицца разрезана на 24 куска и вы съедите 18, количество съеденного все равно останется тем же, просто куски стали гораздо меньше.



Уменьшение чисел в обеих частях дроби называется сокращением и, как правило, улучшает вашу жизнь. Предположим, у вас есть вегетарианская пицца, и какой-то маньяк искромсал ее на 84 куска. Вы съели 70, это сколько от общего количества? Получается дробь 70/84, которая не укладывается у вас в голове, поэтому снова ищем число, чтобы поделить на него верх и низ дроби. Поскольку числа вверху и внизу дроби четные, они делятся на 2. Получив 35/42, мы видим, что оба числа делятся на 7, и теперь нам становится ясно, что вы съели 5/6 вегетарианской пиццы.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука