Читаем Математика для взрослых. Лайфхаки для повседневных вычислений полностью

Иногда при переводе простых дробей в десятичные после запятой получается всего несколько знаков, а иногда тянется длинный ряд цифр, уходящий в миллионные и миллиардные доли. В таких случаях нужно выбрать приемлемую точность и округлить десятичную дробь. Например, дробь 1/6 в виде десятичной дроби будет выглядеть как 0,166666666… и далее бесконечное количество шестерок. Жизни не хватит такое сосчитать, поэтому ее нужно округлить до трех разрядов после запятой; выйдет нечто среднее между 0,166 и 0,167. Чтобы понять, какое из двух значений правильнее, посмотрим, какой была следующая, четвертая после запятой цифра – это, конечно же, шестерка. Если очередная цифра равна или больше пяти, то предыдущую цифру увеличиваем на единицу. Поэтому выбираем 0,167. Если это кажется неочевидным, можно, как мы уже делали, представить числа на линейке.


Если при делении одного числа на другое не выходит точный результат, цифры после запятой будут рано или поздно повторяться. Такие дроби называются периодическими, а числа, их содержащие, рациональными.

Преобразование простых дробей в десятичные и наоборот

Как мы уже знаем, простые дроби, такие как 5/8, – это непосчитанные операции деления. Десятичные дроби – это результат выполнения операций деления.

От простых дробей к десятичным

Допустим, вам надо посчитать, сколько будет 5 ÷ 8. Для этого сперва попытаемся разделить 5 на 8 – увы, безуспешно. (Если бы можно было делить с остатком, мы бы сказали, что 8 содержится в 5 ноль раз с остатком 5). Чтобы найти ответ в виде десятичной дроби, нужно представить 5 как 5,000000 и затем делить, как обычно, а перейдя за запятую, использовать нули.




Итак, ответ: 5/8 = 0,625.


Разумеется, вы могли получить такой же результат, посчитав 5 ÷ 8 на калькуляторе. Я просто показал вам, как выполняется деление, чтобы вы в деталях разобрались, что к чему.

От десятичных дробей к простым

Если в десятичной дроби после запятой стоит всего одна цифра, то у простой дроби знаменатель равен 10, то есть 0,6 = 6/10. Дальше эту дробь можно сократить до 3/5.

Если в десятичной дроби после запятой стоят две цифры, то у простой дроби знаменатель будет равен 100, поэтому 0,75 = 75/100, что можно сократить до 3/4. Однако 0,76 сокращается только до 19/25, а 0,77 = 77/100 и сокращению не подлежит. Большинство десятичных дробей сложно преобразовать в простые. К примеру, 0,692308 лучше округлить до 0,7 и сказать, что это примерно 7/10. (Полный ответ: 0,692308 = 9/13 с округлением до шести знаков после запятой, но вам это уже неважно, так ведь?)

Как десятичные дроби могут помочь в работе с простыми дробями

Как мы уже видели, складывать и вычитать простые дроби зачастую проблематично, однако если преобразовать их в десятичные, все значительно упрощается. Помните, как в разделе «Сравнение, сложение и вычитание дробей» мы складывали 3/4 и 5/6, чтобы узнать количество съеденной пиццы?

Калькулятор подсказывает нам, что 3/4 = 0,75 и 5/6 = 0,83333. Следовательно, 3/4 + 5/6 = 1,58333. Складывать простые дроби с помощью калькулятора в виде десятичных дробей гораздо проще, но представить себе 1,58333 пиццы сможет далеко не каждый.

Еще калькулятор поможет вам сравнивать дроби. Что больше: 14/19, 27/35, 32/41 или 36/47? Преобразуем эти дроби в десятичные, и ответ станет очевиден! Соответственно получим 0,737, 0,771, 0,780 и 0,766. Самая большая десятичная дробь 0,780, а значит, и простая дробь 32/41 больше остальных.

Занятные дроби

• 1/9 = 0,1111111…, 2/9 = 0,2222222…, 3/9 = 0,3333333… и так далее.

• 1/11 = 0,090909…

• 1/7 = 0,142857142857142857… те же повторяющиеся цифры будут в 2/7, 3/7, 4/7, 5/7 и 6/7. Так, 2/7 = 0,2857142857142857.

• 1/9801 = 0,00 01 02 03 04 05 06 07 08 09 10 11 12 13… и так далее.

Умножение и деление на 10, 100 и 1000

При умножении целых чисел на 10 мы просто добавляем ноль в их конец, например 37 × 10 = 370. Тем не менее будет удобнее и точнее представить, будто мы сдвигаем цифры на один знак влево.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука