Когда в случае с колодой карт мы проводим отбор без замещения, можно путем проверки определить, существует ли зависимость. Для определенных событий (таких, как поток прибыли и убытков по сделкам), где зависимость не может быть определена путем проверки, мы будем использовать серийный тест. Серийный тест подскажет нам, имеет ли наша система больше (или меньше) периодов последовательных выигрышей и проигрышей, чем случайное распределение.
Цель серийного теста — найти счет Z для периодов выигрышей и проигрышей в системной торговлеe. Счет Z означает, на сколько стандартных отклонений вы удалены от среднего значения распределения. Таким образом, счет Z = 2,00 означает, что вы на 2,00 стандартных отклонения удалились от среднего значения (ожидание случайного распределения периодов выигрышей и проигрышей).
Счет Z — это просто число стандартных отклонений, на которое данные отстоят от среднего значения нормального распределения вероятности. Например, счет Z
в 1,00 означает, что данные, которые вы тестируете, отклонены на 1 стандартное отклонение от среднего значения.
Счет Z затем переводится в
Доверительная Счет Z |
граница(%) |
99,73 3,00 |
99 2,58 |
98 2,33 |
97 2,17 |
96 2,05 |
95,45 2,00 |
95 1,96 |
90 1,64 |
При минимальном количестве 30 закрытых сделок мы можем рассчитать счет Z. Попытаемся узнать, сколько периодов выигрышей (проигрышей) можно ожидать от данной системы? Соответствуют ли периоды выигрыша (проигрыша) тестируемой системы ожидаемым? Если нет, существует ли достаточно высокая доверительная граница, чтобы допустить, что между сделками существует зависимость, т.е. зависит ли результат текущей сделки от результата предыдущих сделок? Ниже приведено уравнение серийного теста. Счет Z для торговой системы равен:
(1.1) Z=(N*(R-0,5)-Х)/((Х*(Х-N))/(N-1))^(1/2), где
N = общее число сделок в последовательности;
R = общее число серий выигрышных или проигрышных сделок;
X=2*W*L;
W
L = общее число проигрышных сделок в последовательности.
Этот расчет можно провести следующим образом:
1. Возьмите данные по вашим сделкам:
A) Общее число сделок, т.е. N.
Б) Общее число выигрышных сделок и общее число проигрышных сделок.
Теперь рассчитайте X.
Х = 2 * (Общее число выигрышей) * (Общее число проигрышей).
B) Общее число серий в последовательности, т.е. R.
2. Предположим, что произошли следующие сделки:
-3, +2, +7, -4, +1, -1, +1, +6, -1, 0, -2, +1.
Чистая прибыль составляет +7. Общее число сделок 12, поэтому N = 12. Теперь нас интересует не то, насколько
- + + - +-++---+
Как видно, последовательность состоит из 6 прибылей и 6 убытков, поэтому X =2 * 6 * 6 = 72. В последовательности есть 8 серий, поэтому R = 8.
1. Последовательность будет выглядеть следующим образом:- + + - +-++---+ т.е. 1 2 3 4 5 6 7 8
2. Вычислите значение выражения:
N*(R-0,5)-X Для нашего примера:
12* (8 -0, 5) -72
12*7,5-72
90 - 72
18
3. Вычислите значение выражения:
(X*(X-N))/(N-1) Для нашего примера:
(72* (72-12))/(12-1)
(72* 60)/11
4320/11
392,727272
4. Возьмите квадратный корень числа, полученного в пункте 3. В нашем примере:
392,727272 ^
(1/2) = 19,817347775. Разделите ответ из пункта 2 на ответ из пункта 4. Это и есть счет Z. В нашем примере:
18/19,81734777 = 0,9082951063