Читаем Математика. Утрата определенности. полностью

Разум обладает способностью прозревать истину только в том, что строит по собственному плану и, хотя начать построение он может, руководствуясь своими идеями, на более позднем этапе ему необходимо с помощью эксперимента выведать у природы, насколько удачны предложенные им идеи. Вот тогда и наступает время для теории и для проверки ее соответствия реальному миру. В основном математика отличается от естественных наук одной особенностью: в то время как в физике на смену одним теориям приходили другие, радикально новые, в математике значительная часть логики, теории чисел и классического анализа успешно функционировали на протяжении многих веков. Более того, они применимы и поныне. Независимо от того, являются ли названные выше составные части математики абсолютно надежными или нет, они отлично нам служат — у нас нет ни оснований, ни права усомниться в них. Все эти разделы математики можно было бы назвать «квазиэмпирическими», ибо эмпирические их истоки потонули в глубине веков и для нас почти неразличимы.

В подтверждение сказанного приведем пример из истории дифференциального и интегрального исчисления. Несмотря на несмолкавшие споры о логических основах исчисления, как методология оно оказалось вполне успешным. По иронии судьбы именно теория бесконечно малых Лейбница (а не весь аппаратматематического анализа) во второй половине нашего столетия неожиданно получила строгое обоснование (так называемый нестандартныйанализ; см. гл. XII).

Критерием применимости к внешнему миру можно воспользоваться даже для проверки аксиомы выбора. Сам Цермело в работе 1908 г. утверждал: «Каким образом Пеано приходит к своим основополагающим принципам… если в конечном счете он не может их доказать? Ясно, что он получает их, анализируя способы логического вывода, признанные правильными в ходе исторического развития, и отмечая, что эти принципы интуитивно очевидны и необходимы для науки…» Отстаивая правомерность использования аксиомы выбора, Цермело ссылался на успехи, достигнутые с помощью этой аксиомы. В работе 1908 г. он отметил, сколь полезной оказалась (даже тогда) аксиома выбора в теории трансфинитных чисел, в теории вещественного числа Дедекинда (см. [46] и [47]) и в решении более специальных проблем анализа.

Лидеры различных математических школ и направлений, рекомендуя использовать приложения к естественным наукам как путеводную нить и критерий доброкачественности математики, руководствуются не только желанием выбрать одно из течений в основаниях математики. Все они сознают, что силы математики в решении физических проблем неизмеримо возросли, и считают недопустимым игнорировать услуги, оказываемые математикой человечеству в познании мира, только потому, что сохранились разногласия в основаниях математики. Хотя многие математики на протяжении без малого последних ста лет и перестали заниматься естественнонаучными приложениями, величайшие из математиков XX в. — Пуанкаре, Гильберт, фон Нейман и Вейль — внесли существенный вклад в современную физику.

К сожалению, большинство математиков — в силу указанных ранее (гл. XIII) причин, которые следует считать скорее предосудительными, чем похвальными, — и поныне не работают в области приложений своей науки; вместо этого они продолжают во все возрастающем темпе создавать все новые теоремы чистой математики. Некоторое представление о размахе современных исследований по (чистой и прикладной) математике можно получить по журналу Mathematical Review {177}, печатающему краткие рефераты наиболее значительных новых работ, — ежемесячно в этом журнале публикуется около 2500 рефератов, т.е. около 30 000 рефератов в год.

Можно было бы думать, что тупик, в который зашел нескончаемый спор о том, какую именно математику можно считать «правильной» и какая школа математической мысли является наиболее последовательной, а также множество направлений, по которым математика может далее развиваться (даже оставаясь в рамках одного и того же течения в области оснований), позволит чистым математикам воспользоваться «паузой» и переключиться на решение проблем, связанных с основаниями математики, вместо того чтобы достраивать в разных направлениях здание математической науки, игнорируя шаткость фундамента и рискуя тем, что новые теоремы могут оказаться логически неверными. Но этого не происходит, так что математики пренебрегают как философскими вопросами оснований, так и критерием практической приложимости. Почему же они так охотно работают в областях математики, далеких от приложений?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже