Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре различных подхода к математике, которые были отчетливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления математики стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, т.е. старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела и к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись.
В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить что проводимые им математические доказательства по крайней мере согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он среди прочих важных и значительных результатов доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать ее непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматически-дедуктивный метод, столь высоко ценимый в прошлом как надежный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось и математики разбились на еще большее число группировок.
В настоящий момент положение дел в математике можно обрисовать примерно так. Существует не одна, а много математик, и каждая из них по ряду причин не удовлетворяет математиков, принадлежащих к другим школам. Стало ясно, что представление о своде общепринятых, незыблемых истин — величественной математике начала XIX в., гордости человека — не более чем заблуждение. На смену уверенности и благодушию, царившим в прошлом, пришли неуверенность и сомнения в будущем математики. Разногласия по поводу оснований самой «незыблемой» из наук вызвали удивление и разочарование (чтобы не сказать больше). Нынешнее состояние математики — не более чем жалкая пародия на математику прошлого с ее глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства.
Как думают некоторые математики, расхождения во мнениях относительно того, что следует считать настоящей математикой, когда-нибудь будут преодолены. Особое место среди тех, кто так считает, занимает группа ведущих французских математиков, пишущих под коллективным псевдонимом Никола Бурбаки:
С древнейших времен критические пересмотры оснований всей математики в целом или любого из ее разделов почти неизменно сменялись периодами неуверенности, когда возникали противоречия, которые приходилось решать… Но вот уже двадцать пять веков математики имеют обыкновение исправлять свои ошибки и видеть в этом обогащение, а не обеднение науки; это дает им право смотреть в будущее спокойно.
Но гораздо больше математиков настроены пессимистично. Один из величайших математиков XX в. Герман Вейль сказал в 1944 г.:
Вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками. «Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддается рационализации и не может быть объективным.