«Геродот[33]
рассказывает, — читаем мы в книге французского астронома Море (Загадки науки, 1926 г., т. I), — что египетские жрецы открыли ему следующее соотношение между стороною основания пирамиды и ее высотою: квадрат, построенный на высоте пирамиды, в точности равен площади каждого из боковых треугольников. Это вполне подтверждается новейшими измерениями. Вот доказательство, что во все времена пирамида Хеопса рассматривалась как памятник, пропорции которого рассчитаны математически.Приведу более позднее доказательство: мы знаем, что отношение между длиною окружности и ее диаметром есть постоянная величина, хорошо известная современным школьникам. Чтобы вычислить длину окружности, достаточно умножить ее диаметр на 3,1416.
Математики древности знали это отношение лишь грубо приближенно.
Но вот, если сложить четыре стороны основания пирамиды, мы получим для ее обвода 931,22 метра. Разделив же это число на удвоенную высоту (2 × 148,208), имеем в результате 3,1416, т. е. отношение длины окружности к диаметру. (Другие авторы из тех же измерений пирамиды выводят значение
Этот единственный в своем роде памятник представляет собою, следовательно, материальное воплощение числа „пи“, игравшего столь важную роль в истории математики. Египетские жрецы имели, как видим, точные представления по ряду вопросов, которые считаются открытиями ученых позднейших веков[34]
».Еще удивительнее другое соотношение: если сторону основания пирамиды разделить на точную длину года — 365,2422 суток, то получается как раз 10-миллионная доля земной полуоси, с точностью, которой могли бы позавидовать современные астрономы…
Далее: высота пирамиды составляет ровно миллиардную долю расстояния от Земли до Солнца — величины, которая европейской науке стала известна лишь в конце XVIII века. Египтяне 5000 лет назад знали, оказывается, то, чего не знали еще ни современники Галилея и Кеплера, ни ученые эпохи Ньютона. Неудивительно, что изыскания этого рода породили на Западе обширную литературу.
А между тем все это — не более как пустая игра цифрами. Дело представится совсем в другом свете, если подойти к нему с элементарными правилами оценки результатов приближенных вычислений.
Рассмотрим же по порядку те примеры, которые мы привели:
1) О числе «пи». Арифметика приближенных чисел утверждает, что если в результате действия деления мы желаем получить число с шестью верными цифрами (3,14159), мы должны иметь в делимом и делителе, по крайней мере, столько же верных цифр. Это значит, в применении к пирамиде, что для получения шестизначного «пи» надо было измерить стороны основания и высоту пирамиды с точностью до миллионных долей результата, т. е. до одного миллиметра. Астроном Море приводит для высоты пирамиды — 148,208 м, на первый взгляд как будто действительно с точностью до 1 мм.
Но кто поручится за такую точность измерения пирамиды? Вспомним, что лаборатория Палаты мер и весов, где производятся точнейшие в мире измерения, не может при измерении длины добиться такой точности (она получает при измерении длины лишь 6 верных цифр). Понятно, насколько грубее может быть выполнено измерение каменной громады в пустыне. К тому же истинных, первоначальных размеров пирамиды давно нет в натуре, так как облицовка ее выветрилась и никто не знает, какой она была толщины. Чтобы быть добросовестным, надо брать размеры пирамиды в целых метрах; а тогда получается довольно грубое «пи», — не более точное, чем то, которое мы извлекаем из математического папируса Ринда.
Если пирамида действительно есть каменное воплощение числа «пи», то воплощение это, как видим, далеко не совершенное. Но вполне допустимо, что пирамида не сооружена ради выражения именно этого соотношения. В пределы приближенных трехзначных выражений для размеров пирамиды хорошо укладываются и другие допущения. Возможно, например, что для высоты пирамиды было взято 2
/3 ребра пирамиды или 2/3 диагонали ее основания. Вполне допустимо и то соотношение, которое было указано Геродотом: что высота пирамиды есть квадратный корень из площади боковой грани. Все это догадки, столь же вероятные, как и «гипотеза пи».2) Следующее утверждение касается продолжительности года и длины земного радиуса: если разделить сторону основания пирамиды на точную длину года (число из 7 цифр), то получим в точности 10-миллионную долю земной оси (число из 5 цифр). Но раз мы уже знаем, что в делимом у нас не больше трех верных цифр, то ясно, какую цену имеют здесь эти 7 и 5 знаков в делителе и в частном. Арифметика уполномочивает нас в этом случае только на 3 цифры в длине года и земного радиуса. Год в 365 суток и земной радиус около 6400 километров — вот числа, о которых мы вправе здесь говорить.