Задача 2-я. Исходя из расположения, показанного на схеме I, привести шашки в правильный порядок, но со свободным полем в левом верхнем углу (см. чертеж). Задача 3-я. Исходя из расположения схемы I, поверните коробку на четверть оборота и передвигайте шашки до тех пор, пока они не примут расположения чертежа.
К задаче 3-й
Задача 4-я. Передвижением шашек превратите коробку в „магический квадрат“, а именно: разместите шашки так, чтобы сумма чисел была во всех направлениях равна 30».
РЕШЕНИЯ
Расположение задачи 2-й может быть получено из начального положения следующими 44 ходами:
14, 11, 12, 8, 7, 6, 10, 12, 8, 7
4, 3, 6, 4, 7, 14, 11, 15, 13, 9
12, 8, 4, 10, 8, 4, 14, И, 15, 13
9, 12, 4, 8, 5, 4, 8, 9, 13, 14
10, 6, 2, 1.
Расположение задачи 3-й достигается следующими 39 ходами:
14, 15, 10, 6, 7, 11, 15, 10, 13, 9
5, 1, 2, 3, 4, 8, 12, 15, 10, 13
9, 5, 1, 2, 3, 4, 8, 12, 15, 14
13, 9, 5, 1, 2, 3, 4, 8, 12.
Магический квадрат с суммою 30 получается после ряда ходов:
12, 8, 4, 3, 2, 6, 10, 9, 13, 15
14, 12, 8, 4, 7, 10, 9, 14, 12, 8
4, 7, 10, 9, 6, 2, 3, 10, 9, 6
5, 1, 2, 3, 6, 5, 3, 2, 1, 13
14, 3, 2, 1, 13, 14, 3, 12, 15, 3.
Приведем замечание немецкого математика Шуберта о числе возможных задач при «игре в 15».
«Сколько всего возможно задач, т. е. сколько различных расположений можно дать 15 шашкам, причем каждый раз пустое поле расположено справа внизу? Чтобы определить, сколько перестановок можно получить с помощью 15 предметов, начнем с 2-х предметов:
2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 12 × 13 × 14 × 15
перестановок. Вычислив это произведение, мы найдем для числа задач игры внушительное число:
1 биллион 307 674 миллиона 365 000».
Из этого огромного числа задач ровно половина принадлежит к разрешимым и столько же — к неразрешимым. Заметим еще, что если бы возможно было ежесекундно давать шашкам новое положение, то, чтобы перепробовать все возможные расположения, потребовалось бы, при непрерывной работе круглые сутки, свыше 40 000 лет.
Странная задача на премию
Профессор Г. Симон
Лет 20 тому назад в Берлине подвизался искусный счетчик, предлагавший публике такую задачу (переделываем ее на русский лад):
«Кто сможет уплатить 5 рублей, 3 рубля или 2 рубля полтинниками, двугривенными и пятаками, всего 20-ю монетами, — тому будет выдано наличными деньгами сто рублей».
Посетителям вручались необходимые монеты, — конечно, заимообразно. Но обещанная сотня рублей должна была остаться навсегда в руках счастливца, которому удалось бы решить задачу.
Разумеется, пол-Берлина потело над разрешением этой задачи (стояли как раз жаркие июльские дни), казавшейся не особенно трудной. Сто рублей хорошо пригодились бы всем, значит — стоит потрудиться. По мере того как выяснялась бесполезность попыток, физиономии решавших вытягивались, и розовые мечты о заманчивой награде испарялись. Надежды оказывались обманчивыми. Ловкий счетчик мог безбоязненно обещать в десять раз большую награду. Никто не вправе был бы на нее притязать, ибо задача требует невозможного
.Как в этом убедиться?
Нам не понадобится глубоко забираться в дебри алгебры, но все же не будем бояться х,
Рассмотрим сначала, можно ли уплатить требуемым образом пять рублей
. Пусть для этого нужно × полтинников,50х + 20
или, разделив на 5,
10х + 4
Это легко осуществить на разные лады. Если, например, взять х = 8, то будем иметь
80 +
или
последнему уравнению можно удовлетворить, если принять
10х + 4
необходимо, следовательно, присоединить второе
x +
Соединяя их в одно, посредством вычитания второго из первого, мы освобождаемся от
теперь сразу становится очевидным, что не может быть таких целых чисел, которые удовлетворили бы этому уравнению. Потому что 9 раз
Задача приводит к противоречивому требованию, и значит — ее решение невозможно.