Например, в поисках кратчайшего пути от дома до кинотеатра алгоритм Дейкстры выстраивает маршрут в обратном направлении – от кинотеатра. Если известно кратчайшее расстояние от дома до всех перекрестков, соединенных с кинотеатром одним отрезком дороги, то работа существенно упрощается. Мы можем просто рассчитать кратчайший путь до кинотеатра, добавляя к длине дорог, соединяющих кинотеатр с ближайшими к нему перекрестками, длину путей от дома до этих перекрестков. Конечно, в начале процесса расстояния от дома до ближайших к кинотеатру перекрестков неизвестны. Однако, использовав ту же процедуру снова, мы можем найти кратчайшие пути до этих предпоследних перекрестков, используя кратчайшие пути от дома до тех перекрестков, которые с ними соединяются. Применяя эту логику рекурсивно, перекресток за перекрестком, мы возвращаемся дому, откуда и начинаем путешествие. Поиск кратчайшего маршрута через дорожную сеть, который просто требует от нас неоднократно делать правильный локальный выбор, – жадный алгоритм. Чтобы реконструировать маршрут, мы просто отслеживаем развязки, через которые нам пришлось пройти, чтобы найти это кратчайшее расстояние. Когда вы ищете через Google Maps наилучший маршрут до кинотеатра, в недрах программы обработку данных начинает, скорее всего, какая-то из вариаций алгоритма Дейкстры.
Когда вы, добравшись до кинотеатра, намереваетесь оплатить парковку, в билетном автомате вполне может не оказаться сдачи. Если у вас достаточно монет, то вы, скорее всего, захотите, как можно быстрее набрать точную сумму. Жадный алгоритм, который в такой ситуации многие используют интуитивно, состоит в том, чтобы вставлять в прорезь монету наивысшего достоинства, но меньше оставшейся к оплате суммы.
Большинство денежных систем – в Великобритании, Австралии, Новой Зеландии, ЮАР, Европе и т. д. – имеют структуру 1–2–5, при этом достоинства монет или банкнот в этой структуре увеличиваются кратно деноминации. В Великобритании, например, в обращении 1-, 2– и 5-пенсовые монеты. Далее следуют монеты достоинством 10, 20 и 50 пенсов, затем монеты в 1 фунт и 2 фунта стерлингов, за которыми следуют 5-, 10-, 20– и, наконец, 50-фунтовые банкноты. Таким образом, чтобы в рамках этой системы набрать 58 пенсов мелочью с помощью жадного алгоритма, нужно взять 50-пенсовик, оставив 8 пенсов до требуемой суммы; 20 и 10 пенсов уже превысят нужную величину, поэтому добавляем 5 пенсов, затем 2 пенса и наконец пенни. Получается, что во всех валютных системах такого типа, включая американскую, исполнение описанного выше жадного алгоритма позволяет набрать нужную сумму из наименьшего количества монет.
Но вовсе не обязательно, что этот алгоритм будет работать в любой валютной системе. Если бы вдруг существовала еще и 4-пенсовая монета, то последние 8 пенсов из 58 можно было бы набрать всего двумя 4-пенсовыми монетами вместо монет по 5, 2 и 1 пенсу. Любая валюта, для которой каждая монета или банкнота по крайней мере в два раза дороже, чем предыдущая по номиналу, удовлетворяет условиям жадного алгоритма. Это объясняет преобладание структуры «1–2–5» – соотношения 2 или 2,5 между номиналами гарантируют, что жадный алгоритм будет работать, а простая десятеричная система сохраняется. Поскольку мелочь требуется практически повсеместно, почти все валюты мира организованы таким образом, чтобы удовлетворять условиям жадного алгоритма – за исключением Таджикистана, где в обращении ходят монеты достоинством в 5, 10, 20, 25 и 50 дирамов. 40 дирамов проще набрать двумя монетами по 20, чем монетами по 25, 10 и 5 дирамов, что предлагает жадный алгоритм.
Кстати, о жадности: вы когда-нибудь пробовали заказать 43 макнаггетса в «Макдоналдсе»? Как ни странно, эти жареные во фритюре панированные кусочки курицы породили интересную математику. В Великобритании макнаггетсы первоначально подавали в коробках по 6, 9 или 20 штук. Обедая с сыном в «Макдоналдсе», математик Анри Пиччотто решил подсчитать, сколько наггетсов он не сможет заказать одномоментно, используя комбинации из трех коробок. Ответом стал числовой ряд 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37 и 43. Все остальные «наборы» наггетсов составить было можно; эти числа с того дня стали известны как числа Макнаггетса. Самое большое число, которое нельзя получить, комбинируя с кратными величинами заданного набора чисел, называется числом Фробениуса. Числом Фробениуса для куриных макнаггетсов, таким образом, было 43. К сожалению, когда «Макдоналдс» добавил в ассортимент упаковки по 4 наггетса, число Фробениуса упало до 11. Забавно, что даже с добавлением этой новой коробки, жадный алгоритм не позволит набрать 43 наггетса (две порции по 20 дадут сразу 40, а порции из 3 наггетсов нет), так что получить на заказ 43 наггетса в «Макавто» сегодня все еще непросто – хотя набрать это количество и возможно.
Высокоразвитые