Читаем Материаловедение. Шпаргалка полностью

Возникновение микротрещин при вязком и хрупком разрушениях происходит путем скопления дислокаций перед границами зерен или другими препятствиями (неметаллические включения, карбидные частицы, межфазовые границы), что приводит к концентрации напряжений. При анализе микроструктуры различают транскристаллитное (по телу зерна) и интеркристаллитное (по границам зерен) разрушения. Разрушение металла в условиях эксплуатации конструкций и машин может быть не только вязким или хрупким, но и смешанным – вязкохрупким.

Материалы разрушаются по разному в случаях усталости и при однократных нагрузках. Разрушение характеризуется отсутствием в изломе внешних признаков пластической деформации, т. е. в целом усталостный излом имеет характер хрупкого излома. Однако в микрообъемах и тонких слоях сечения нагруженного образца могут быть пластические деформации, которые приводят к зарождению трещин. Данные трещины, постепенно развиваясь и распространяясь, приводят к окончательному разрушению материала. В случае усталостного нагружения начало пластической деформации, вызванное движением дислокаций, может быть при напряжениях меньше предела текучести. При увеличении числа циклов нагружения увеличивается плотность дислокаций, в первую очередь, в поверхностных слоях. Тонкие линии скольжения на поверхности превращаются в характерные полосы, профиль которых представлен в виде выступов и впадин. Глубина впадин в зависимости от времени испытания может достигать 10–30 мкм. При образовании устойчивых полос скольжения происходит чередование областей с высокой и низкой плотностью дислокаций.

Усталостные трещины зарождаются в поверхностных впадинах. Один из возможных механизмов образования выступов и впадин связан с круговым движением винтовых дислокаций. Винтовая дислокация перемещается из одной плоскости в другую по замкнутому контуру при помощи поперечного скольжения. В итоге дислокация выходит на поверхность, на которой образуются выступы и впадины.

Микротрещины при циклическом нагружении зарождаются на начальной стадии испытания за счет притока вакансий и последующего возникновения и слияния микропор. В образце может образоваться большое количество микротрещин. Но в дальнейшем развиваются не все микротрещины, а лишь те, у которых имеются наиболее острые вершины и которые наиболее благоприятно расположены по отношению к действующим напряжениям. К окончательному разрушению образца приводит самая длинная, острая и глубокая трещина, распространяясь по сечению образца: для усталостного излома образца характерно наличие зоны прогрессивно растущей трещины и зоны окончательного излома. В зоне прогрессивно растущей трещины наблюдаются полосы в виде изогнутых линий. Полосы образуются в результате рывков и задержек движения трещины вследствие упрочнения металла у ее основания и расширения ее фронта. На процесс разрушения при циклических нагрузках существенное влияние оказывают концентраторы напряжений. Концентраторы напряжений могут быть конструктивными (резкие переходы от сечения к сечению), технологическими (царапины, трещины, риски от резца), металлургическими (поры, раковины). Независимо от своего происхождения концентраторы напряжений в той или иной степени снижают предел выносливости при одном и том же уровне переменных напряжений. Для оценки влияния концентратора напряжений на усталость испытывают гладкие и надрезанные образцы при симметричном цикле напряжений. Надрез на образце выполняется в виде острой круговой выточки.

15. Электрические свойства проводниковых материалов

В качестве проводниковых материалов используют чистые металлы, а также сплавы металлов. Наибольшей проводимостью обладают чистые металлы, исключением является ртуть. Из меди и алюминия изготовляют обмоточные, монтажные, установочные кабели и провода. Алюминий относится к группе легких металлов. Плотность его равна 2,7 г/см3. Доступность, большая проводимость, а также стойкость к атмосферной коррозии позволили широко применять алюминий в электротехнике. Недостатками алюминия являются невысокая механическая прочность при растяжении и повышенная мягкость даже у твердотянутого алюминия. Алюминий – металл серебристого цвета или серебристо-белого. Его температура плавления составляет 658–660 °C.

Голые провода алюминия могут достаточно длительное время работать благодаря тому, что алюминий в короткое время покрывается тонкой пленкой окисла. Это служит защитой от воздействия кислорода.

Оксидная пленка на алюминиевых проводах имеет значительное электрическое сопротивление, в связи с чем в местах соединения алюминиевых проводов образуются большие переходные сопротивления. Места соединения очищают при использовании вазелина с целью предотвращения влияния кислорода на алюминий.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже