Читаем Материалы для ювелирных изделий полностью

<p>6.1. Термическая обработка литейных сплавов</p>

Согласно классификатору ювелирных сплавов (рис. 3.36) основными являются благородные сплавы на серебряной, золотой и платиновой основах, а также медные, алюминиевые и цинковые сплавы. Преимущественными операциями термообработки всех перечисленных сплавов являются закалка и старение. Теория и назначение данных видов термообработки описаны в предыдущем разделе. В настоящем разделе на конкретных примерах рассмотрены применение закалки и старения для литых сплавов на алюминиевой и медной основах, а также гомогенезационный и гетероге-низационный отжиги.

Согласно положению сплава на диаграмме состояния литейный дюралюмин марки Д1, содержащий 3,8 % Си, 0,8 % Mg, 0,6 % Мп, остальное Al, после затвердевания в условиях равновесия должен иметь однофазную α-структуру. Скорость охлаждения при кристаллизации сплава ≤ 1 °C/с соответствует литью в песчано-глинистые смеси и в оболочковые формы. Однако при охлаждении сплава в кокиле, литье под давлением и прессовании при кристаллизации со скоростью охлаждения от 20 до 150 °C/с кристаллизация проходит в неравновесных условиях. В сплаве в некотором количестве появляются продукты эвтектической кристаллизации. Количество эвтектической составляющей тем больше, чем выше содержание меди и магния в сплаве.

При последующем охлаждении вследствие резкого уменьшения растворимости меди и магния в алюминии происходит распад твердого раствора с выделением соединения СиAl2 и в небольшом количестве фазы S (Al2MgCu) (рис. 6.3). Обе фазы вызывают упрочнение сплава.

Режимы закалки и старения подбираются для каждого состава сплава индивидуально (в приведенном случае – закалка от 500 °C, старение при 20 °C в течение четырех суток) и в основном одинаковы для деформированного и литого состояния сплава. Однако при дендритной ликвации литых сплавов их механические свойства становятся неоднородными. Кроме того такие сплавы начинают сильнее корродировать.

Рис. 6.3. Микроструктуры: а – литого дюралюмина Д1 × 250 (видны дендриты алюминиевого твердого раствора (светлые) и фаза CuAI2 (серая); фаза S и марганцовистая составляющая ввиду их малых количеств при данном увеличении не обнаруживаются); б – закаленного дюралюмина × 500 (видны зерна алюминиевого твердого раствора и включения нерастворимых фаз; в — состаренного дюралюмина × 200 (на шлифе кроме α-твердого раствора видны темные включения марганцовистой фазы).

Как говорилось ранее, дендритную ликвацию можно устранить, если сплав отжечь при температурах на 50—100 °C ниже линии солидуса.

Для разных литейных сплавов существуют два вида отжига – гомогонизационный и гетерогенизационный.

В однофазных сплавах, например в литой однофазной оловянистой бронзе, содержащей 5 % олова и закристаллизовавшейся в кокиле со скоростью охлаждения 25 °C/с, главный процесс при гомогенизации – выравнивание состава зерен твердого раствора, т. е. устранение внутрикристаллической ликвации (рис. 6.4).

Рис. 6.4. Микроструктура литой оловянистой бронзы с 5 % S.: а – × З00, видны темные оси дендритных зерен бедного оловом твердого раствора, промежутки между осями – твердый раствор, обогащенный оловом; б – × 150, микроструктура той же бронзы после отжига (при отжиге происходит выравнивание состава внутри зерен и сплав принимает полиэдрическое строение).

Устранение внутрикристаллической ликвации в других однофазных сплавах, например в медноникелевом сплаве с непрерывном рядом твердых растворов, показано на рис. 6.5. В рассматриваемом сплаве, содержащем неравновесную избыточную фазу, при гомогенизации происходят два основных процесса: выравнивание концентрации внутри зерен твердого раствора и растворение неравновесных избыточных фаз. Оба процесса протекают в течение длительного времени. В основе их лежит диффузия, и поэтому гомогенизационный отжиг называют также диффузионным.

Рис. 6.5. Микроструктура сплава Cu – 20 % Ni, × 100:а – после литья; б – после отжига при 1000 °C в течение 40 ч.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже