Читаем Матвей Петрович Бронштейн полностью

Половину статьи Бронштейн посвятил этой идее, видимо, под впечатлением дискуссий на совещании по квантовой механике в июне—июле 1930 г. в харьковском УФТИ. Из Харькова же была направлена статья В. А. Амбарцумяна и Д. Д. Иваненко [94] (датированная 21 июля), в которой предлагалось заменить обычное непрерывное евклидово пространство дискретной совокупностью точек, образующих кубическую решетку подобно бесконечному кристаллу. Дифференциальные уравнения поля заменялись на разностные (df/dx — Af /Ах), в решения входил шаг решетки, и появлялась возможность избавиться от бесконечной собственной энергии.

Однако при этом возникала фундаментальная трудность — совместить такое решеточное (явно неизотропное) пространство с теорией относительности[17]. Преодолеть эту трудность Амбарцумян и молодой английский математик Эрселл (Н. D. Ursell) хотели, установив вероятностную связь наблюдений в разных системах отсчета, т. е. статистически обобщив преобразования Лоренца. Эти попытки, по свидетельству В. А. Амбарцумяна, Бронштейн обсуждал в докладе на Одесском съезде.

Он был не только наблюдателем бурных событий в теории решеточной геометрии. В открытке, адресованной Я. И. Френкелю и отправленной из Крыма 9 августа, т. е. после харьковского совещания по квантовой механике и перед Одесским съездом, мы читаем [284, с. 212]:

«Дорогой Яков Ильич, посылаю Вам изображение дома, в котором я живу; моего окна не указываю, так как оно выходит в противоположную сторону.

Следуя Вашему указанию, веду себя примерно, купаюсь в море, делаю абсолютно безнадежные попытки научиться плавать, читаю Born'a — Jordan'a, Wintner'a (Unendlichen Matrixen) и детективные романы из мисхорской библиотеки, наслаждаюсь спокойствием, прекратил перевод Дирака после того, как Димус не внял мне и не прислал 1-й главы, проверял формулы Амбарцумиана по теории решетки и нашел, что они ошибочны и т. д.

Тронут Вашим теплым отношением к моим брюкам; впрочем, в этом климате многие носят вместо них трусы.

Здесь поселился А. Ф. Иоффе и на солнце греет уж холодеющую кровь (это из Пушкина). Привет Сарре Исааковне.

Ваш М. Бронштейн»[18].


Тема квантования пространства не была оставлена и во время морской прогулки на теплоходе «Грузия» в Батуми, устроенной для участников съезда. Далеко не все относились оптимистически к задаче построения квантовой геометрии. Паули, например, считал ее безнадежной. Бронштейн приводит его слова: «Кто в непрерывном пространстве роет другому яму, сам в нее попадет!». Эта фраза содержалась в передовой статье, написанной Паули для первого номера газеты «Am Morgen nach der Schlacht» (Наутро после битвы), изданного Бронштейном 26 августа 1930 г. Газета давала отчеты о теоретических битвах, происходивших накануне вечером в кают-компании (издателю наверняка пригодился опыт «Physikalishe Dummheiten» и «Astrocabical Journal»).

В пылу одной из таких битв прозвучало двустишие:

Die Esel fassen kaum es Die Quantelung des Raumes[19].

(«Ослы едва ли постигнут квантование пространства», или, рифмованно: «Ослы не только из упрямства не смогут квантовать пространство».)

Подводя итог рассмотрению «нового кризиса» квантовой теории, Бронштейн подчеркивает общую тенденцию развития науки, состоящую в вытеснении некоторых наглядных представлений, унаследованных от классической физики: «Реально существующий мир может и не соответствовать нашим утверждениям о нем, какими бы необходимыми они нам ни казались». Он приводит мнение Гейзенберга: основной грех квантовой электродинамики — использование в микромире уравнений Максвелла и понятия поля, основанных на классических представлениях о движении электрона и имеющих только макроскопический смысл. Это обвинение, воплощенное в формулы Ландау и Пайерлсом, сыграло стимулирующую роль и было «нейтрализовано» только анализом Бора, Розенфельда 1933 г. (подробнее см. гл. 5).

В статье Гейзенберга [157], датированной августом 1930 г., остался след его попыток развить дискретную геометрию. Он пишет о минимальной длине, об уравнениях в конечных разностях, но приводит простое соображение против нового дискретного подхода. В релятивистской области, когда скорости частиц порядка скорости света с, массы покоя электрона и протона пренебрежимы по сравнению с энергией частиц, и, следовательно, квантово-релятивистская теория должна базироваться только на фундаментальных константах с и h, а из них нельзя составить величину размерности длины (которая могла бы претендовать на роль минимальной). Это соображение повторено в работе Бора и Розенфельда 1933 г., в которой на основе тщательного анализа процедуры измерения, допустимой в квантовой электродинамике, было спасено понятие « поле в точке», поставленное под вопрос Ландау и Пайерлсом.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже