Читаем Матвей Петрович Бронштейн полностью

Внешнее оправдание стало еще большим после открытия в 1923 г. эффекта Комптона и его фотонного объяснения на основе законов сохранения энергии и импульса. Поскольку, однако, это объяснение не уменьшило разрыва между корпускулярным и волновым описаниями, Бор продолжал бороться с квантами света. И в 1924 г. он вместе с Крамерсом и Слетером предложил подход к описанию эффекта Комптона, обходящийся без понятия световых квантов и предполагающий соблюдение ЗС только в статистическом смысле [120]. Эта опасность для ЗС длилась, однако, недолго: в 1925 г. эксперимент (Комптона—Саймона и Боте—Гейгера) ясно высказался за фотонное описание и против описания Бора—Крамерса—Слетера.

Так закончился первый натиск на ЗС. Для Бора, впрочем, он завершился не столько экспериментальным подтверждением ЗС в субатомной физике, сколько созданием последовательного аппарата квантовой механики, увенчанного в 1927 г. принципом неопределенности и принципом дополнительности,— был построен долгожданный теоретический мост, связывающий корпускулярное и волновое описания уже не только света, но и вещества.

Второй натиск на ЗС породили проблемы ядерной физики. Если первый натиск начинался с теоретической неудовлетворенности и кончился приговором эксперимента, то второй начался с неудовлетворительной экспериментальной ситуации и завершился построением теории (впрочем, мы еще увидим, насколько теоретическое было сплавлено с экспериментальным). Прежде всего — хронологическая канва событий.

Начало положили эксперименты Эллиса—Вустера 1927 г. Они установили, что электроны, вылетающие при р-распаде ядер, распределены по энергиям непрерывно. И хотя начальное и конечное состояния ядра обладают вполне определенными энергиями, их разность больше средней энергии р-электронов. Было установлено, и что р-распад не сопровождается у-излучением, которое могло бы восстанавливать баланс энергии в каждом отдельном акте р-распада. Это дало Бору основание предположить, что в ядерной физике ЗС может нарушаться. Самые ранние свидетельства его гипотезы — рукопись заметки, которую в июле 1929 г. он послал Паул2и на отзыв, и соответствующие их письма [247, с. 4][34] (публично эту гипотезу Бор высказал только в октябре 1931 г. [116]).

Паули не счел предположение Бора основательным и в противовес выдвинул собственную гипотезу. В декабре 1930 г. в письме «собранию радиоактивных дам и господ», собравшихся в Тюбингене, «имея в виду "неправильную" статистику ядер N и Li6»[35], а также непрерывный спектр р-распада, Паули «предпринял отчаянную попытку спасти теорему статистики и закон сохранения энергии» [252, с. 390]. Он предположил, что в ядрах существуют нейтральные частицы спина 1/2, которые при р-распаде вылетают из ядер вместе с электронами и, обладая большой проникающей способностью, уносят с собой «несохраняющуюся» часть энергии. Присутствие таких частиц в ядре могло предотвратить и азотную катастрофу. Вскоре Паули, однако, понял, что одной нейтральной частицей обе эти проблемы решить нельзя. И в июне 1931 г. он впервые публично (но лишь устно) сообщил о своем плане спасения ЗС с помощью нейтральных, весьма проникающих частиц, сопровождающих р-распад [Там же, с. 393].

В октябре 1931 г. на международной конференции по ядерной физике в Риме противостоящие гипотезы встретились. Хотя Паули нашел там важного союзника — Ферми (которому новая частица — нейтрино — стала обязана своим именем и теорией), большинство участников конференции склонялись к точке зрения Бора, впервые опубликованной именно в Трудах Римской конференции. Реферируя этот сборник, Бронштейн писал: «Согласно взглядам Бора, которые теперь уже, кажется, стали почти общепринятыми среди теоретиков, законы сохранения энергии и количества движения, представляющие одну из наиболее характерных черт современной физической теории, должны перестать соблюдаться в области релятивистской теории квант» [68] (при чем здесь «релятивистская теория квант», мы увидим в следующем разделе).

Паули же не решался публиковать свою нейтринную гипотезу вплоть до Сольвеевского конгресса в октябре 1933 г. Там было сообщено о резкой верхней границе р-спектра, согласующейся с ЗС, а две экспериментально открытые новые частицы — нейтрон и позитрон — жили в физике уже на полных правах. После этого конгресса и в особенности после построенной Ферми вскоре, в самом конце 1933 г., теории р-распада число физиков, сомневающихся в ЗС, стало уменьшаться и обратилось в нуль в 1936 г. после драматического, но длившегося всего несколько месяцев кризиса, связанного с опытами Шэнкланда.

Эти опыты, изучавшие комптоновское рассеяние в области высоких энергий, противоречили фотонной теории и законам сохранения. Сильное волнение, вызванное результатами Шэнкланда, и вспыхнувшие вновь дискуссии о применимости ЗС в микромире, кажутся сейчас объяснимыми только верой в сказочный закон, согласно которому третья попытка всегда успешна. Опыты Шэнкланда были очень скоро опровергнуты и забыты. Тогда же исчезли сомнения в ЗС.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже