Читаем Матвей Петрович Бронштейн полностью

В классической части гравитационные волны описываются посредством четырехзначкового тензора Римана—Кристоффеля (а не посредством малой добавки к метрике Минковского, как обычно делают), что дает возможность сразу же исключить фиктивные — координатные — гравитационные волны. Со всей отчетливостью выявляется калибровочная свобода системы (Бронштейн пользуется терминами «Eichungtransformation» и «Eichung») и тот факт, что гравитационная волна имеет две степени свободы.

В квантовой части получены два очень существенных результата. Рассчитана интенсивность излучения энергии, происходящего при испускании гравитационных квантов материальной системой, и показано, что в классическом пределе (h—0) квантовая теория гравитации дает такие же результаты, как классическая: квантовая формула Бронштейна переходит в классическую квадрупольную формулу Эйнштейна.

Затем к гравитации применена идея, которую по отношению к электродинамике высказал Дирак и развили Фок и Подольский в 1932 г. [281], получившие из квантовой электродинамики кулоновскую силу. Аналогично этому Бронштейн получил ньютоновский закон тяготения как следствие квантово-гравитационного закона взаимодействия. При этом он обращает внимание на то, что, несмотря на сходство кулоновского и ньютоновского выражений для взаимодействия поля с частицей, противоположные знаки этих сил следуют вполне естественно из общего квантово-механического формализма[53].

Оба результата, которые Бронштейн получил из рассмотрения квантованного слабого гравитационного поля,— это, казалось бы, всего лишь естественные требования принципа соответствия, и они могли только, самое большее, свидетельствовать о правильности способа квантования. Однако в действительности эти результаты имели принципиальное значение, поскольку особое положение гравитационного поля, отождествление его с геометрией пространства-времени вызывало, как уже говорилось, сомнения в необходимости синтеза квантовой теории и ОТО. Мнение о слишком особом характере гравитации, отделяющем ее пропастью от других физических полей, было довольно распространенным. Не менее известной была тогдашняя позиция Эйнштейна, считавшего, что от истинной, полной физической теории общую теорию относительности отделяет, если можно так выразиться, гораздо меньшее расстояние, чем квантовую теорию.

Исследование Бронштейна продемонстрировало глубокие связи классического и квантового (хотя и неполного) описаний гравитации и тем самым свидетельствовало о возможности и необходимости квантового обобщения ОТО.

Заметим, что термином «гравитон» Бронштейн не пользовался, хотя само это слово уже существовало. В типографском исполнении оно имеется в статье Блохинцева и Гальперина 1934 г. в журнале «Под знаменем марксизма» [111], и, судя по тексту, нет оснований думать, что термин родился здесь; видимо, он существовал уже по меньшей мере в устном виде. Эта статья, упоминавшаяся в главе 4, имела совсем не гравитационное название «Гипотеза нейтрино и закон сохранения энергии» и была написана, когда теория бета-распада, построенная Ферми на основе гипотезы нейтрино, пользовалась уже широким признанием. Однако последний раздел этой статьи «Природа нейтрино» содержит соображения, очень любопытные для cGh-истории, и мы их приведем полностью, несмотря на большой объем цитаты.

«Взаимодействие заряженных частиц (закон Кулона) с современной точки зрения [ссылка на статью Дирака 1932 г.] рассматривается динамически, а именно как результат непрерывного испускания и поглощения квантов света взаимодействующими частицами. (... )

Весьма интересно сравнение свойств нейтрино и так называемого гравитона. До сих пор известные в физике поля распадаются на два класса: электромагнитные и гравитационные. (...)

Все многочисленные попытки, в первую очередь самого Эйнштейна, найти связь между электромагнитными явлениями и явлениями гравитационными, начиная с попытки гениального М. Фарадея, кончались неудачей и заводили в дебри формализма. (... )

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже