Совершенствование концепции «Дельта» IV привело к созданию в 1936 г. самолета DFS 39 («Дельта» IVc). Над ним, наряду с Липпишем, работали также инженеры Ф. Урсинус (F Ursinus) и Й. Хуберт (J. Hubert). От второго двигателя в DFS 39 избавились как от ненужного излишества — сохранился лишь один «Побджой» с тянущим винтом в носовой части гондолы-фюзеляжа. Киль, представлявший собой продолжение гондолы, имел небольшую высоту. Для увеличения продольной устойчивости за-концовки крыла были немного отогнуты вниз. Самолет был двухместным, пилот и пассажир располагались тандемом. В таком виде «Дельта» Липпиша представляла собой вполне пригодный к эксплуатации спортивный самолет довольно небольших габаритов — его длина составляла 5,4 м, высота — 1,8 м, размах крыла — 9,6 м, а его площадь — 13,4 м. Пустой DFS 39 весил 390 кг, а взлетная масса самолета достигала 600 кг. Несмотря на маломощный двигатель, машина развивала максимальную скорость 220 км/ч. Потолок составлял 6300 м, а дальность полета достигала 1350 км. И хотя серийно DFS 39 не строился, он продемонстрировал принципиальную пригодность дельтовидного крыла и стал своеобразной отправной точкой для дальнейших проектных работ.
1936 г. стал этапным и для другой составляющей будущего Ме 163 — жидкостного ракетного двигателя, над созданием которого работал Гельмут Вальтер (Helmuth Walter). Опытный образец его ЖРД показал на стенде время работы 45 с и развил тягу 130 кгс. Эти параметры позволяли уже рассматривать возможность установки двигателя на самолет. Для чего это было нужно — ведь серийные самолеты в то время едва подбирались к рубежу скорости в 400 км/ч, а для этого вполне хватало поршневых моторов? Дело в том, что конструкторы пытались заглянуть «в послезавтра», сформировать облик машин будущего, гораздо более скоростных. В этом им помогали исследования в области теоретической механики и аэродинамики, уже к середине 30-х гг. определившие, что на околозвуковых и трансзвуковых скоростях перед летательными аппаратами с винтовыми силовыми установками встает практически непреодолимая преграда. Мощность поршневых двигателей постоянно росла, а для её более полного снятия с моторов приходилось делать воздушные винты все большего диаметра. При этом линейная скорость концов лопастей, суммируемая с проекцией скорости полета, быстро выходила на трансзвуковые величины. Это, в свою очередь, вело к резкому изменению картины обтекания воздухом лопасти винта и, в частности, росту волнового сопротивления. Поскольку воздух сжимаем, то на лопастях возникают области высокого давления, которые мгновенно распространяются волнообразно за лопастью в виде тонких лент повышенного давления, по линии которых резко возрастает температура и плотность. Таким образом, возникновение воздушных волн вызывает резкое увеличение сопротивления вращению винта. В итоге, тяга, создаваемая пропеллером, падает, соответственно, уменьшается и скорость самолета.
Преодолеть этот звуковой барьер можно было только сменив пропеллер другим типом движителя. Наиболее перспективными выглядели реактивные двигатели. Правда, твердотопливные двигатели, хоть и наиболее простые, для применения на самолетах, как уже отмечалось, не годились. Турбореактивные двигатели находились ещё на самой ранней стадии своего развития, да и конструкция их была достаточно сложной. А вот жидкостные ракетные моторы представлялись весьма подходящими.
В рейхсминистерстве авиации куратором работ по реактивным двигателям был доктор Адольф Боймкер (Adolf Beaumker), убежденный сторонник внедрения реактивной тяги в авиации. Боймкер был приятелем крупного авиаконструктора и предпринимателя Эрнста Хейнкеля (Ernst Heinkel), поэтому неудивительно, что проектирование экспериментального ракетного аэроплана поручили именно его фирме. Так появился самолет классической аэродинамической схемы Не 176.