В 1935 году было сделано ещё одно важное предсказание. Японский физик Хидэки Юкава постулировал существование частицы с массой, большей чем у электрона, но меньшей чем у протона – так называемого мезона. В течение следующих трёх лет действительно удалось обнаружить частицу с промежуточной массой (мюон), но оказалось, что у неё совсем не те свойства, которые предсказывал Юкава. В конце концов нашли и частицу Юкавы, которая носит название «пион».
Шли годы, и учёные обнаруживали всё новые и новые частицы. По мере увеличения размеров ускорителей тоненький ручеёк открытий превратился в мощный поток, и в конце концов физиков захлестнуло «море» элементарных частиц. Они даже начали задумываться, иссякнет ли когда-нибудь этот поток. Для удобства было решено разделить все частицы на два типа – лептоны и адроны. К лептонам отнесли лёгкие частицы (наиболее известная из них – электрон), а к адронам – тяжёлые. Адроны подразделены ещё на две группы – барионы и мезоны. Самый известный из барионов – протон; к ним принадлежит также и нейтрон. Как уже упоминалось раньше, мезоны имеют промежуточную массу.
И всё же простая классификация частиц по типам отнюдь не помогла решить проблему. С ростом числа частиц в семействах пришло понимание того, что в основе классификации должна быть некая система; все эти частицы, в особенности огромное семейство барионов, никак не могли быть «по-настоящему элементарными». Они явно состоят из каких-то более фундаментальных частиц.
В 1964 году Мюррей Гелл-Манн из Калифорнийского технологического института и независимо от него Георг Цвейг из Женевы предложили решение проблемы. Они предположили, что адроны состоят из трёх фундаментальных частиц, которые Гелл-Манн назвал кварками (в предложенной схеме есть и антикварки). С физической точки зрения теория была замечательной – она предсказывала все наблюдаемые частицы и позволяла свести число действительно элементарных типов адронов во Вселенной всего к трём; с таким числом справиться значительно легче. Существовала, впрочем, одна трудность – кварков никто никогда не видел. След одиночного кварка ни разу не наблюдался в пузырьковой камере, более того, ниоткуда, кроме этой теории, их существование не следовало! И всё же, несмотря на то что кварки до сих пор не обнаружены, теория осталась. В неё внесли некоторые изменения, но по сей день она лучшая из всех теорий элементарных частиц.
Итак, все элементарные частицы, из которых построена Вселенная, самые фундаментальные (насколько можно судить) составляющие материи можно разделить на два класса: лептоны и кварки. Лептон нельзя расщепить на что-то более элементарное, и уж, конечно, нельзя расщепить кварк, который к тому же до сих пор не удалось изолировать. Сейчас принято считать, что кварк в принципе изолировать нельзя.
Весь мир построен из этих различным образом сгруппированных частиц. Но если бы существовали только они, наш мир выглядел бы весьма странно: в пространстве беспорядочно носились бы бесчисленные миллиарды частиц. Нам известно, что на самом деле частицы движутся не беспорядочно, на них действуют силы, удерживающие их вместе. В природе известны четыре типа сил, два из которых проявляются внутри атомов. Атом состоит из ядра, в котором плотно упакованы протоны и нейтроны (в ядре сосредоточена почти вся масса атома), и вращающихся вокруг него электронов. В электрически нейтральном атоме число электронов равно числу протонов. Так как протоны имеют положительный заряд, а электроны – отрицательный, они удерживаются на орбите в результате электрического притяжения противоположных по знаку зарядов.
Приглядевшись к ядру попристальнее, можно заметить, что протоны располагаются очень близко друг к другу, хотя, будучи одноименно заряженными частицами, они должны были бы отталкиваться, что, кстати, на определённом расстоянии и происходит. Но есть другая сила – сильное взаимодействие, примерно в 1000 раз более мощное, чем электромагнитное. Сильное взаимодействие отличается от электромагнитного тем, что оно близкодействующее, т.е. действует только на расстоянии порядка диаметра ядра. Это означает, что при сближении два протона сначала отталкивают друг друга, а потом вдруг, на очень малом расстоянии, между ними возникает сильнейшее притяжение, удерживающее их вместе. Сильное взаимодействие проявляется не между всеми частицами, а только между парами адронов.