Читаем Мечта Эйнштейна. В поисках единой теории строения полностью

Вскоре после открытия пульсаров было замечено, что скорость их вращения медленно, очень медленно уменьшается – их период за месяц возрастает примерно на одну миллионную долю секунды. Этого следует ожидать, если предположить, что они испускают энергию в пространство (а так оно и есть). Неожиданным оказалось то, что у некоторых из них период внезапно «подскакивал». Эти странные скачки астрономы назвали проскальзыванием. Сейчас мы знаем, что по крайней мере у Крабовидной туманности это было связано со «звёздотрясением». При уменьшении скорости вращения звезды её сплющенная у полюсов поверхность «расправляется» и на поверхности образуется небольшая трещина.


Некоторые итоги


Теперь, когда мы знаем, как эволюционирует звезда, давайте остановимся и вернёмся к вопросу, который задавали себе в начале главы. Когда общая теория относительности перестаёт работать? Другими словами, когда она становится неадекватной и возникает потребность в другой (ещё не созданной) теории? Задавая тот же вопрос в применении к ньютоновой теории, мы обнаружили, что она неприменима к атомам, для этой области требовалась другая теория – квантовая. Но квантовая теория отказывает при очень больших скоростях, и её следует дополнить специальной теорией относительности.

Для того чтобы заниматься обычными звёздами, общая теория относительности не нужна, вполне достаточно ньютоновой теории, которая хорошо работает в этой области. Но нам важно было обсудить жизненный цикл звезды, чтобы подготовить почву для описания таких объектов, как белые карлики и нейтронные звёзды.

В случае белых карликов Чандрасекару удалось добиться успеха, когда он применил одновременно и квантовую теорию и специальную теорию относительности. Без них не удалось бы объяснить процессы, происходящие в белых карликах, следовательно, теория Ньютона для таких объектов не подходит. Однако без общей теории относительности тут ещё можно обойтись.

Затем мы занялись нейтронными звёздами, чья плотность гораздо выше, чем плотность белых карликов. Первые подробные расчёты произвели Оппенгеймер и Волков с применением общей теории относительности, и это говорит о том, что граница проходит здесь, – нейтронные звёзды и другие ещё более плотные объекты ни понять, ни объяснить без общей теории относительности нельзя.

Итак, до сих пор общая теория относительности нас удовлетворяла. Но что идёт за нейтронными звёздами? Как и для белых карликов, тут есть свои ограничения. Нейтронное давление вырождения может удерживать звезду с массой до 3,2 массы Солнца. Если при коллапсе звезды образуется масса, большая этой, то, как мы увидим в следующей главе, получится чрезвычайно странный объект – чёрная дыра. Вот здесь-то общая теория относительности и начинает нас подводить. Впрочем, чёрные дыры важны и в связи с другой проблемой: мы увидим, что они являются первым связующим звеном между квантовой теорией и общей теорией относительности.

Глава 5


Абсолютная бездна: Черная дыра

В последнее время внимание астрономов привлекло одно из самых странных в мире открытий. В соответствии с общей теорией относительности в космосе должны существовать объекты, которые обладают столь сильными гравитационными полями, что планеты, звёзды, астероиды или любые другие тела, затянутые в них, просто разрушаются. Ещё более странно то, что, попав в такое поле, никто и ничто не может оттуда выбраться и перестаёт существовать в нашей Вселенной. Такие объекты называют чёрными дырами.

В последние годы проблема чёрных дыр вызывает огромный интерес, хотя сама идея не нова, ей уже около 200 лет. Английский астроном Джон Митчелл, ректор Торнхилла (Йоркшир), ещё в 1784 году доказал, что если масса звезды будет достаточно велика, то свет не сможет покинуть её, т.е. для нас она будет невидима. Через несколько лет к такому же выводу пришёл французский учёный Пьер Симон Лаплас.

Чтобы понять их рассуждения, рассмотрим сначала, что называют скоростью убегания. Представьте себе, что с Земли запускают несколько космических кораблей, причём скорость каждого следующего больше скорости предыдущего. Первые из запущенных ракет будут описывать дугу и падать на Землю, но рано или поздно какая-то из них выйдет на круговую орбиту вокруг Земли. Одна из следующих преодолеет притяжение и улетит в пространство. Её скорость и называется скоростью убегания, причём это понятие относится не только к ракетам, но и ко всем остальным телам, например к естественным спутникам, частицам и т.п. Для Земли скорость убегания составляет примерно 40 000 км/ч. Более массивные объекты имеют бо?льшие значения скорости; чем больше масса, тем больше скорость, а это означает, что рано или поздно для какой-то массы эта скорость будет больше скорости света. Если объектом с такой массой окажется звезда, то её свет просто не сможет покинуть поверхность. Такой именно объект имели в виду Митчелл и Лаплас. В определённом смысле его можно считать чёрной дырой, хотя и не такой, о которой мы будем говорить.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука