Позже появились другие бесконечности, по сравнению с которыми «море» электронов с отрицательной энергией – сущие пустяки. Чтобы показать, откуда берутся бесконечности, посмотрим, как работает теория поля (здесь мы ограничимся только квантовой электродинамикой, теорией электромагнитного поля). Она основана на так называемой теории возмущений. В теории возмущений рассматриваются взаимодействия разных порядков – первого, второго и т.д. Наибольший вклад вносят вычисления взаимодействий первого порядка, затем учитывается вклад второго и последующего порядков; по крайней мере, так предполагалось. Но когда были проделаны первые вычисления, оказалось, что их результаты хорошо совпадают с экспериментом, и нет нужды использовать более высокие порядки, так как это усложняет расчёты. Тем не менее Оппенгеймер и Уоллер однажды провели вычисления в более высоких порядках и обнаружили нечто странное. В итоге, вместо небольшой поправки к результату вычислений в первом порядке они получили бесконечность. Уоллер рассказал об этом одному из ведущих физиков того времени – Паули, но тот не поверил услышанному. Он считал, что такого просто не может быть и где-то допущена ошибка.
Попробуем разобраться, чем объяснялась такая уверенность Паули. Рассмотрим, например, соударение двух электронов; его можно изобразить так, как показано выше. Точка, в которой происходит обмен фотонами, называется вершиной. Каждой такой точке соответствует так называемая константа связи. В случае вычислений первого порядка в квантовой электродинамике константа связи равна 1/137, в вычислениях второго порядка она имеет то же значение, и результат поэтому должен был бы быть в 1/137 раз меньше, чем для первого порядка. Однако Оппенгеймер и Уоллер показали, что это не так – они получили бесконечность. Вскоре оказалось, что трудности, по-видимому, были связаны с массой и зарядом частицы, а также с вакуумом.
Поначалу учёные хотели пренебречь этой трудностью, поскольку вычисления первого порядка прекрасно согласовывались с экспериментом, и выполнять расчёты более высоких порядков казалось лишним, тем более, что они были за пределами возможности экспериментальной проверки. Но затем был обнаружен сдвиг Лэмба. Атом водорода тщательно изучали много лет, и было установлено, что уравнение Шрёдингера позволяет правильно рассчитать расположение спектральных линий. Однако из теории Дирака следовало, что у спектральных линий должна быть ещё и сверхтонкая структура. Хотя обнаружить расщепление линий было очень непросто, это удалось в 1947 году Т. С. Лэмбу с сотрудниками; их открытие сейчас носит название эффекта Лэмба.
Для проведения подробных расчётов требовалось учесть эффекты второго порядка и применить теорию возмущений соответствующего порядка, т.е. нужно было как-то избавиться от появляющихся в этом случае бесконечностей. Сотрудник Лейденского университета Г. А. Крамерс предложил проводить расчёты так, чтобы бесконечности взаимно уничтожались. Правда, оставалось непонятным, как это сделать. Первую такую попытку предприняли Лэмб и Н. Кролл, но их метод был ненадёжен и неточен, хотя и неплох.
Итак, возникла необходимость в хорошем, надёжном методе «избавления» от бесконечностей, и его независимо и почти одновременно разработали трое учёных – Юлиан Швингер, Ричард Фейнман и Шиньиширо Томонага. Первые два родились в Нью-Йорке, а третий – в Японии. Швингер был вундеркиндом, в колледж поступил в 14 лет, первую работу по физике опубликовал в 16, а докторскую диссертацию защитил в 21 год, что необычно даже для вундеркинда. Некоторое время он работал вместе с Оппенгеймером в Калифорнийском университете, но потом переехал в Гарвард, где стал профессором, когда ему не исполнилось ещё и тридцати. Швингер был нелюдим и предпочитал работать в одиночку. Во время второй мировой войны он любил приходить в лаборатории Массачусетского технологического института по ночам, когда там никого не было. Говорят, что иногда сотрудники института записывали на доске условия задач, которые не могли решить, и к своей радости утром обнаруживали приписанное Швингером решение. Но, к сожалению, предложенный им метод «сокращения» бесконечностей весьма сложен, поэтому мы рассмотрим метод Фейнмана.
Фейнман принадлежал к совсем другому типу людей. Он любил развлечения и часто посещал увеселительные заведения. В одном баре со стриптизом его видели так часто, что кто-то из репортёров в конце концов поинтересовался, не жалко ли ему тратить на это столько времени. «Ничуть, – ответил Фейнман, – в такой атмосфере легче думается.»