Читаем Мечта Эйнштейна. В поисках единой теории строения полностью

Когда учёные вплотную занялись изучением различных законов сохранения, оказалось, что одни из них фундаментальнее других. Закон сохранения заряда не нарушается никогда, ни при каких обстоятельствах. А вот закон сохранения странности, например, может нарушаться – он не выполняется при слабых взаимодействиях. Так, может быть, барионное число тоже сохраняется не всегда? Если так, то протон может распадаться. В конце концов учёные пришли к выводу, что так и происходит. О том, что барионное числа не обязательно сохраняется, свидетельствуют и некоторые космологические данные. Известно, что наша Вселенная почти целиком состоит из вещества; если в ней и есть антивещество, то его крайне мало. Почему? Естественно было бы предположить, что Вселенная состоит поровну из вещества и антивещества. Известно, что сейчас это не так, но через доли секунды после Большого взрыва вещество и антивещество присутствовали в равных количествах. Если предположить, что закон сохранения барионного числа может нарушаться, то легко показать, что Вселенная вначале была симметричной по составу, а асимметрия проявилась позже. Другими словами, теория последовательно и изящно объясняет избыток вещества во Вселенной.

А на что распадается протон, если он вообще распадается? Есть несколько возможностей, одна из которых показана ниже: d-кварк превращается в позитрон, а один из u-кварков – в анти-u-кварк (u):

Распад протона на пион (?0) и позитрон (e+)

Если бы нам случилось наблюдать такую реакцию, то скорее всего мы увидели бы образование позитрона (e+) и пиона (?0); пион, в свою очередь, через некоторое время распался бы на фотоны (?). Этот процесс выглядел бы так:

Есть и другие пути распада протона. Один из u-кварков мог бы превратиться в d-кварк с испусканием X-частицы, которая затем привела бы к превращению d-кварка в антинейтрино. Такая реакция имела бы вид: p› ?+ + ?.

Конечно, для распада протона требуется очень много времени. Объяснение тут простое – наши тела состоят из протонов (а также электронов и других частиц), и если бы скорость распада была велика, мы бы являлись источником радиоактивности. Даже малые дозы такого излучения имели бы катастрофические последствия – у людей очень быстро развивался бы рак. Известно, что тело человека не радиоактивно, от него не исходит даже малейшее излучение. Отсюда следует, что время жизни, точнее период полураспада протона (время, в течение которого распадается половина частиц данного типа), должно быть больше 1016 лет.

Первый эксперимент, поставленный для определения периода полураспада протона, дал значение гораздо большее. Этот эксперимент проводился в одной из глубоких шахт в Индии. Учёные обнаружили, что период полураспада протона должен быть больше 1030 лет. Интересно, что вскоре после проведения этого опыта Джорджи, Куинн и Вайнберг, исходя из теоретических соображений (на основе SU(5)-симметрии), показали, что эта величина должна составлять около 1032 лет; позднее они понизили предел до 1031 лет. Это невообразимо долгое время; нашей Вселенной сейчас всего около 1010 лет. Да и можно ли вообще зарегистрировать распад протона, если он происходит так редко? Ответ утвердителен – можно, если период полураспада не превышает 1032 лет (в противном случае возникают трудности). Обнаружить распад можно, если собрать вместе достаточно много протонов. Так, из 1032 протонов в год будет распадаться по одному. Они займут не так уж много места, впрочем, всё зависит от материала, с которым мы имеем дело, но скорее всего для этого потребуется объём с комнату среднего размера.

Я уже упоминал о том, что эксперимент в Индии проводился в глубокой шахте, и это неспроста. Земля постоянно подвергается бомбардировке космическими лучами, поэтому на поверхности было бы трудно определить, какие частицы появились в результате распада, а какие приходят из космоса. Может показаться, что вещество, содержащее такое количество протонов, будет стоить очень дорого, но на самом деле это не так. Протоны есть в любом веществе, поэтому можно использовать довольно дешевые материалы, такие как вода, железо или бетон – ими и пользовались в эксперименте.

Итак, для опыта требуется всего лишь большая масса материала и защищённое от внешних излучений помещение. В Европе есть много длинных туннелей, которые просто созданы для такого эксперимента. Особенно подходящим для этой цели оказался туннель под Монбланом: в нём есть большие помещения для хранилищ, где и проводились опыты. В США опыты производили только в шахтах. Один из экспериментов проводился в соляной шахте под озером Эри, другой – в серебряном руднике около Солт-Лейк-Сити, штат Юта, третий – в старом руднике в Миннесоте. В Миннесоте учёные использовали бетон, а в соляной шахте – воду.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука