Первые варианты теории струн[181]
были не свободны от трудностей. Вычисления показывали, что среди бесконечно большого числа мод колебаний замкнутой струны существует одна мода, в которой струна выглядит как частица с нулевой массой и спином, вдвое большим, чем у фотона[182]. Напомним, что развитие теории струн началось с попытки Венециано понять сильные ядерные взаимодействия, так что первоначально эта теория рассматривалась как адекватное описание сильного взаимодействия и участвующих в нем частиц. Неизвестна ни одна частица такой массы и с таким спином, принимающая участие в сильных взаимодействиях, более того, мы полагаем, что если бы такая частица существовала, она должна была бы быть давно обнаружена, так что налицо серьезное противоречие с экспериментом.Но все дело в том, что частица с нулевой массой и спином, вдвое большим, чем у фотона,
Как часто бывает в физике, теоретики, занимавшиеся струнами, нашли правильное решение неправильно поставленной задачи. В начале 80-х гг. теоретики все больше и больше стали приходить к убеждению, что новые безмассовые частицы, возникшие как математическое следствие уравнений струнных теорий, являются не сильновзаимодействующим аналогом гравитона, а самым настоящим гравитоном[184]
. Чтобы при этом гравитационное взаимодействие имело правильную интенсивность, нужно было увеличить коэффициент натяжения струн в основных уравнениях теории до такой степени, чтобы разность энергий между наинизшим и следующим по величине энергетическими состояниями струны составляла не пустячную величину порядка нескольких сот миллионов эВ, характерную для ядерных явлений, а величину порядка планковской энергии 1019ГэВ, когда гравитационное взаимодействие становится столь же сильным как и другие взаимодействия. Эта энергия так велика, что все частицы стандартной модели – кварки, глюоны, фотоны – должны быть сопоставлены с наинизшими модами колебаний струны, в противном случае, требовалось бы так много энергии на то, чтобы их породить, что мы никогда не смогли бы эти частицы обнаружить.С этой точки зрения квантовая теория поля типа стандартной модели представляет собой низкоэнергетическое приближение к фундаментальной теории, которая является совсем не теорией полей, а теорией струн. Сейчас мы полагаем, что квантовые теории полей работают столь успешно при энергиях, доступных современным ускорителям, совсем не потому, что окончательное описание природы возможно на языке квантовой теории поля, а потому, что
Так как теории струн включают в себя гравитоны и еще кучу других частиц, впервые возникает основа для построения возможной окончательной теории. Действительно, поскольку представляется, что наличие гравитона – неизбежное свойство любой теории струн, можно сказать, что такая теория объясняет существование гравитации. Эдвард Виттен, ставший позднее ведущим специалистом по теории струн, узнал об этой стороне теории в 1982 г. из обзорной статьи теоретика Джона Шварца. Он вспоминает, что эта мысль стала
Похоже, что теории струн сумели решить и проблему бесконечностей, сводившую на нет все предыдущие попытки построения квантовой теории тяготения. Хотя струны и выглядят как точечные частицы, все же главное в них то, что они не являются точечными. Можно убедиться, что бесконечности в обычных квантовых теориях поля непосредственно связаны с тем, что поля описывают точечные частицы. (Например, закон обратных квадратов для силы взаимодействия точечных электронов приводит к бесконечной величине силы, если поместить оба электрона в одну точку.) С другой стороны, должным образом сформулированная теория струн, похоже, вообще свободна от бесконечностей[186]
.