Читаем Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы полностью

Подобные преобразования симметрии действуют на метку частицы, которая отличает протоны от нейтронов, способом, который математически совпадает с тем, как обычные вращения в трехмерном пространстве действуют на спины частиц, вроде протона, нейтрона или электрона[115]. Помня об этом примере, многие физики вплоть до начала 60-х гг. молчаливо предполагали, что по аналогии с вращениями, переводящими протон и нейтрон друг в друга, все преобразования внутренней симметрии, оставляющие неизменными законы природы, должны иметь форму вращений в некотором внутреннем пространстве двух, трех или более измерений. Учебники, в которых излагалось применение принципов симметрии к физике (включая классические книги Германа Вейля и Юджина Вигнера) даже не упоминали о других математических возможностях. Только в конце 50-х гг., после открытия множества новых частиц сначала в космических лучах, а позднее на ускорителях вроде бэватрона в Беркли, в среде физиков-теоретиков возникло более широкое понимание возможностей описания внутренних симметрий. Новые частицы, казалось, объединялись в значительно более обширные семейства, чем простая пара протон-нейтрон. Например, обнаружилось, что протон и нейтрон несут черты фамильного сходства с шестью другими частицами, называемыми гиперонами и имеющими тот же спин и близкие массы. Какой же тип внутренней симметриии может порождать такие обширные родственные группы?

В начале 60-х гг. физики, занимавшиеся этим вопросом, обратились за помощью к литературе по математике. Для них оказалось приятным сюрпризом, что математики уже давно составили в некотором смысле полный каталог всех возможных симметрий. Полный набор преобразований, оставляющих что-то неизменным, будь то конкретный объект или законы природы, образует математическую структуру, называемую группой, а раздел математики, изучающий преобразования симметрии, называется

теорией групп[116]. Каждая группа характеризуется абстрактными математическими правилами, не зависящими от того, что подвергается преобразованию, так же как правила арифметики не зависят от названий тех величин, которые мы складываем или умножаем. Список типов семейств, разрешенных каждой конкретной симметрией законов природы, полностью определяется математической структурой группы симметрии.

Те группы преобразований, которые действуют непрерывно, наподобие вращений в обычном пространстве или смешивания электронов и нейтрино в электрослабой теории, называются группами Ли

– по имени норвежского математика Софуса Ли. Французский математик Эли Картан в своей диссертации в 1894 г. дал полный список всех «простых» групп Ли[117], с помощью комбинаций которых можно построить все остальные группы. В 1960 г. Мюррей Гелл-Манн и израильский физик Ювал Нееман независимо обнаружили, что одна из этих простых групп Ли, известная под названием SU(3), как раз правильно описывает структуру семейств множества элементарных частиц в согласии с экспериментальными данными. Гелл-Манн позаимствовал некоторые понятия буддизма и назвал новую симметрию восьмеричным путем
26), так как известные на опыте частицы лучше всего делились на семейства по восемь членов, как протон, нейтрон и шесть их родственников. К тому времени не все семейства были полными. Так, нужна была новая частица, чтобы заполнить семейство из десяти частиц, похожих на нейтрон, протон и гипероны, но имеющих втрое больший спин. Одним из больших успехов новой SU(3) симметрии стало то, что предсказанная частица была обнаружена в 1964 г. в Брукхейвене[118]
, причем значение ее массы совпало с теоретической оценкой Гелл-Манна.

Теория групп, оказавшаяся столь полезной для физики, была на самом деле придумана математиками по причинам, относящимся к сугубо внутренним математическим проблемам. Толчок к развитию теории групп дал в начале XIX в. Эварист Галуа в своем доказательстве того, что не существует общих формул для решения определенных алгебраических уравнений (включающих пятую или более высокую степень неизвестной величины)[119]. Ни Галуа, ни Ли, ни Картан не имели ни малейшего представления, как можно было бы применить теорию групп в физике.

Чрезвычайно удивительно, что чувство математической красоты всегда приводило математиков к построению формальных структур, которые оказывались впоследствии полезными для физиков, даже несмотря на то, что сами математики ни о чем подобном не помышляли. В широко известном эссе физика Юджина Вигнера[120] это явление так и называется: «непостижимая эффективность математики». Физики считают, что способность математиков предвидеть, какие математические средства понадобятся для развития физических теорий, совершенно фанатастична. Это похоже на то, как если бы Нейл Армстронг, делая в 1969 г. первые шаги по поверхности Луны, увидел бы в лунной пыли отпечатки сапог Жюля Верна.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже