Читаем Мечты об окончательной теории полностью

Крошка Тим. Меня поражает, что вы отвечаете столь ненаучным образом. Волновая функция не представляет объективной реальности, так как ее нельзя измерить. Например, если мы наблюдаем, что частица находится здесь, мы не в силах из этого заключить, что волновая функция до наблюдения имела нулевое значение там; у нее могли быть любые значения здесь и там и нам просто посчастливилось обнаружить частицу здесь, а не там в результате акта наблюдения. Но если волновая функция не реальна, то почему же вы придаете так много значения тому, что она эволюционирует детерминированным образом? Все, что мы когда-либо можем измерить, это величины типа положения, импульса или спина, и для них мы можем получить только вероятностные предсказания. При этом до тех пор, пока какой-нибудь человек не вмешивается с тем, чтобы измерить эти величины, мы вообще не можем сказать, что частица находится в каком-то определенном состоянии.

Дядюшка Скрудж. Мальчик мой, похоже, ты проглотил безо всякой критики родившуюся в девятнадцатом веке доктрину, называемую позитивизмом, которая утверждает, что наука должна иметь дело только с теми вещами, которые можно реально наблюдать. Согласен, что ни в одном эксперименте невозможно измерить волновую функцию. Ну и что? Много раз повторив измерения для одного и того же начального состояния, ты можешь узнать, какой должна быть волновая функция этого состояния и применять результаты для проверки наших теорий. Чего же еще требовать? Тебе, на самом деле, нужно привести свои мысли в соответствие с двадцатым веком. Волновые функции реальны настолько же, насколько реальны кварки и симметрии: их просто удобно включить в наши теории. Любая система находится в определенном состоянии, независимо от того, наблюдает ее какое-либо человеческое существо или нет; состояние описывается не своими положением или импульсом, а волновой функцией.

Крошка Тим. Не думаю, что мне стоит спорить о том, что реально, а что нет, с тем, кто проводит вечера, прогуливаясь с духами. Позвольте мне только напомнить вам серьезную проблему, с которой сталкиваешься немедленно, как только представляешь, что волновая функция реальна. Эта проблема была упомянута во время той атаки на квантовую механику, которую предпринял Эйнштейн на Сольвеевском конгрессе 1933 г. в Брюсселе, а затем в 1935 г. была изложена им письменно в знаменитой статье совместно с Борисом Подольским и Натаном Розеном. Представьте систему, состоящую из двух электронов и приготовленную таким образом, что в какой-то момент времени электроны находятся на известном большом расстоянии друг от друга и обладают известным суммарным импульсом. (Это не нарушает соотношение неопределенностей Гейзенберга. Например, можно с любой желаемой точностью измерить расстояние между электронами, послав от одного к другому пучок света очень короткой длины волны; это, конечно, исказит импульс каждого из электронов, но в силу закона сохранения импульса, не изменит их полный импульс.) Если затем кто-то измеряет импульс первого электрона, то импульс второго также можно немедленно найти, поскольку известна сумма импульсов. С другой стороны, если кто-то измеряет положение первого электрона, то и положение второго становится немедленно известным, так как измерено расстояние между ними. Но все это означает, что наблюдая состояние первого электрона, вы можете мгновенно изменить волновую функцию, так что второй электрон станет обладать определенным положением или определенным импульсом, даже несмотря на то, что вы и близко не подходили ко второму электрону. И что же, вы продолжаете настаивать на реальности волновой функции, которую можно менять таким способом?

Перейти на страницу:

Похожие книги

Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука