Читаем Мечты об окончательной теории полностью

Проблему бесконечностей можно было бы решить с помощью грубой силы, просто постановив, что электроны могут испускать и поглощать только фотоны, энергия которых ниже некоторого граничного значения. Все успехи, достигнутые в 1930-е гг. квантовой электродинамикой в объяснении взаимодействий электронов и фотонов, относились к процессам с участием фотонов низких энергий, так что эти успехи могли быть сохранены, если предположить, что граничное значение энергий фотонов достаточно велико, например 10 миллионов электрон-вольт. При таком выборе предела энергии виртуальных фотонов квантовая электродинамика предсказывала бы очень маленькие сдвиги энергии атомов. В то время никто еще не мог измерить энергии атомов с необходимой точностью, чтобы проверить, существуют или нет эти крохотные сдвиги энергии, так что вопрос о расхождениях с опытом не возникал. (На самом деле отношение к квантовой электродинамике было столь пессимистичным, что никто и не пытался вычислить величину этих сдвигов.) Беспокойство в связи с подобным решением проблемы бесконечностей возникало не из-за конфликта с опытом, а из-за того, что предлагаемый выход из положения был слишком произволен и слишком уродлив.

В физической литературе 1930-х и 1940-х гг. можно обнаружить множество других возможных, но малопривлекательных решений проблемы бесконечностей, включая даже теории, в которых бесконечности, связанные с испусканием и последующим поглощением фотонов, сокращались с вкладом других процессов, имевших отрицательную вероятность. Ясно, что понятие отрицательной вероятности не имеет смысла; попытка ввести это понятие в физику есть мера отчаяния, ощущавшегося в связи с проблемой бесконечностей.

Найденное в конце концов решение проблемы бесконечностей, появившееся в конце 1940-х гг.[83], было значительно более естественным и совсем не революционным. Эта проблема вышла на передний план в начале июня 1947 г. во время конференции, проводившейся в гостинице «Баранья голова» в Шелтер Айленде. Конференция была организована с целью собрать вместе физиков, готовых после войны вновь начать думать над фундаментальными проблемами. Случилось так, что эта конференция стала наиболее важной из всех после знаменитой Сольвеевской конференции, состоявшейся пятнадцатью годами ранее в Брюсселе, когда Эйнштейн и Бор вели битву титанов по поводу будущего квантовой механики.

Среди физиков, принимавших участие в конференции в Шелтер Айленде, был Уиллис Лэмб, молодой экспериментатор из Колумбийского университета. Используя микроволновую радарную технологию, разработанную во время войны, Лэмб сумел как раз перед началом конференции очень точно измерить один из эффектов[84], который пытался еще в 1930 г. рассчитать Оппенгеймер, а именно сдвиг энергии атома водорода благодаря испусканию и последующему поглощению фотона. Этот эффект известен теперь под названием лэмбовского сдвига. Проведенные измерения сами по себе не имели никакого отношения к решению проблемы бесконечностей, но побудили физиков вновь попытаться вступить в схватку с этой задачей, чтобы вычислить измеренное значение лэмбовского сдвига. Найденное тогда решение проблемы определило развитие физики до наших дней.

Перейти на страницу:

Похожие книги

Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука