Читаем Мечты об окончательной теории полностью

В первоначальной версии стандартной теории слабых и электромагнитных взаимодействий нарушение симметрии между этими взаимодействиями было приписано новому полю, специально для этой цели введенному в теорию. Как и магнитное поле в обычном постоянном магните, это поле может спонтанно поворачиваться, указывая некоторое направление, правда, не в обычном пространстве, а на воображаемом циферблате, направление стрелок на котором отличает электроны от нейтрино, фотоны от частиц W,

Z и т.п. То значение поля, при котором нарушается симметрия, принято называть вакуумным значением
, так как поле принимает это значение в пустоте, в области вдали от воздействия других частиц. После четверти века исследований мы так и не знаем, верна ли такая простая картина спонтанного нарушения симметрии, но пока эта картина остается наиболее приемлемым объяснением.

Не первый раз, желая удовлетворить некоторым требованиям теории, физики предполагают существование новых полей. В начале 30-х гг. беспокойство ученых вызывал закон сохранения энергии в процессе бета-распада радиоактивных ядер. В 1930 г., для того чтобы восстановить баланс энергии, казалось бы, бесследно теряемой в этом процессе, Вольфганг Паули предположил, что существует частица с подходящими свойствами, названная им нейтрино, которая и уносит недостающую энергию. Трудноуловимое нейтрино было в конце концов экспериментально обнаружено[166] более чем два десятилетия спустя. Утверждать существование чего-то, что еще никогда не наблюдалось, – дело рискованное, но иногда приносящее успех.

Как и другие поля в квантово-механической теории, это новое поле, ответственное за нарушение симметрии электрослабых взаимодействий, должно переносить энергию и импульс в виде сгустков или квантов. Электрослабая теория утверждает, что, по крайней мере, один из этих квантов должен наблюдаться как новая элементарная частица. За несколько лет до того, как Салам и я разработали теорию объединения слабых и электромагнитных сил, основанную на идее спонтанного нарушения симметрии, ряд теоретиков дал математическое описание простых примеров подобного нарушения симметрии[167]. Особенно ясно это удалось сделать в 1964 г. Питеру Хиггсу из Эдинбургского университета. Поэтому новую частицу, с необходимостью возникшую в первоначальной версии электрослабой теории, назвали хиггсовской частицей

.

Никто еще не обнаружил хиггсовскую частицу, но это не противоречит теории: хиггсовская частица и не могла бы быть обнаружена в сделанных до сих пор экспериментах, если ее масса больше пятидесяти масс протона, что вполне возможно. (К сожалению, электрослабая теория молчит в отношении точного значения массы хиггсовской частицы, только ограничивая ее значение сверху числом в один триллион электрон-вольт, т.е. в тысячу раз больше массы протона.) Необходимы новые эксперименты, чтобы проверить, действительно ли существует хиггсовская частица, а может, и несколько таких частиц с отличающимися свойствами, и установить их массы.

Важность этих проблем выходит за рамки вопроса о характере нарушения электрослабой симметрии. Теория электрослабых взаимодействий дала нам понимание того, что все частицы стандартной модели, за исключением хиггсовских частиц, приобретают свои массы за счет нарушения симметрии между слабыми и электромагнитными силами. Если бы мы могли каким-то способом выключить это нарушение симметрии, то электрон, частицы W, Z и все кварки стали бы безмассовыми, как фотон или нейтрино. Поэтому загадка происхождения масс элементарных частиц есть часть проблемы понимания механизма спонтанного нарушения электрослабой симметрии. В первоначальной версии стандартной модели хиггсовская частица – единственная, масса которой непосредственно входит в уравнения теории, нарушение электрослабой симметрии придает всем другим частицам массы, пропорциональные массе хиггсовской частицы. Но у нас нет уверенности, что все обстоит так просто.

Перейти на страницу:

Похожие книги

Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука