Читаем Медицинская физика полностью

где f(x) – плотность вероятности или функция распределения вероятностей. Она показывает, как изменяется вероятность отнесения к интервалу dx случайной величины в зависимости от значения самой этой величины. Нормальный закон распределения. В теориях вероятностей и математической статистики, в различных приложениях важную роль играет нормальный закон распределения (закон Гаусса). Случайная величина распределена по этому закону, если плотность ее вероятности имеет вид:

где а = М(х) – математическое ожидание случайной величины;

σ – среднее квадратное отклонение; следовательно;

σ2– дисперсия случайной величины. Кривая нормального закона распределения имеет колоколообразную форму, симметричную относительно прямой х = а (центр рассеивания).

<p>5. Распределение Максвелла (распределение газовых молекул по скоростям) и Больцмана</p>

Распределение Максвелла – в равновесном состоянии параметры газа (давление, объем и температура) остаются неизменными, однако микросостояния – взаимное расположение молекул, их скорости – непрерывно изменяются. Из-за огромного количества молекул практически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной случайной величиной, указать распределение молекул по скоростям. Распределение молекул по скоростям подтверждено различными опытами. Распределение Максвелла можно рассматривать как распределение молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Выделим отдельную молекулу. Хаотичность движения позволяет например для проекции скорости Vx молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности того, что молекула имеет компоненту скорости Ux, записывается следующим образом:

Можно получить максвелловскую функцию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

Распределение Больцмана. Если молекулы находятся в каком-либо внешнем силовом поле (например, в гравитационном поле Земли), то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих некоторым определенным значением потенциальной энергии. Распределение частиц по потенциальным энергиям в силовых полях – гравитационном, электрическом и др. – называют распределением Боль-цмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации n молекул от высоты h над уровнем земли, или потенциальной энергии mgh:

Такое распределение молекул в поле тяготения Земли можно качественно, в рамках молекулярно-кине-тических представлений, объяснить тем, что на молекулы оказывают влияние два противоположных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молеку-лярно-хаотическое движение, стремящееся равномерно разбросать молекулы по всему возможному объекту.

<p>6. Математическая статистика и корреляционная зависимость</p>

Математическая статистика – наука о математических методах систематизации и использования статистических данных для решения научных и практических задач. Математическая статистика тесно примыкает к теории вероятностей и базируется на ее понятиях. Однако главным в математической статистике является не распределение случайных величин, а анализ статистических данных и выяснение, какому распределению они соответствуют. Большая статистическая совокупность, из которой отбирается часть объектов для исследования, называется генеральной совокупностью, а множество объектов, собранных из нее, – выборочной совокупностью, или выборкой. Статистическое распределение – это совокупность вариант и соответствующих им частот (или относительных частот).

Для наглядности статистические распределения изображают графически в виде полигона и гистограммы.

Полигон частот – ломаная линия, отрезки которой соединяют точки с координатами (х1; п1), (х2; п2)…. или для полигона относительных частот – с координатами(х11),(х22)….

Гистограмма частот – совокупность смежных прямоугольников, построенных на одной прямой линии, основания прямоугольников одинаковы и равны а, а высоты равны отношению частоты (или относительной частоты) к а:

Наиболее распространенными характеристиками статистического распределения являются средние величины: мода, медиана и средняя арифметическая (или выборочная средняя). Мода (Мо) равна варианте, которой соответствует наибольшая частота. Медиана (Ме) равна варианте, которая расположена в середине статистического распределения. Она делит статистический (вариационный) ряд на две равные части. Выборочная средняя (ХВ) определяется как среднее арифметическое значение вариант статистического ряда.

Перейти на страницу:

Все книги серии Шпаргалки

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Справочник медицинской сестры
Справочник медицинской сестры

Книга «Справочник медицинской сестры» включает основную информацию по вопросам сестринского дела. Авторы рассказывают историю становления сестринского дела как науки, о морально-этических качествах медицинской сестры, ее профессиональной ответственности, правах пациента с учетом современного подхода к сестринской деятельности (читатели смогут узнать, что такое сестринский процесс).Отдельные разделы посвящены описанию, лечению, диагностике наиболее распространенных патологий и уходу за пациентом, помощи при неотложных состояниях. Кроме того, в книге приводятся описания основных медицинских манипуляций, выполняемых медсестрой.Издание может быть использовано в качестве учебного пособия для средних медицинских учебных заведений и как руководство по уходу за больными в домашних условиях.

Виктор Александрович Барановский , Владимир Александрович Плисов , Елена Юрьевна Храмова

Медицина / Справочники / Образование и наука / Словари и Энциклопедии