Путь Эмбдена – Мейергофа наиболее широко используется различными бактериями при потреблении глюкозы. От образующегося при этом конечного продукта – пировиноградной кислоты, а также от таких промежуточных продуктов, как эритрозо-4-фосфат и рибозо-5-фосфат, идут различные метаболические пути синтеза двадцати аминокислот (рис. 32). Общая схема обмена веществ у микроорганизмов, обладающих аэробным дыханием и потребляющих гексозы, показана на рис. 33. Поскольку в аэробных условиях высвобождается гораздо больше энергии, чем при брожении, некоторые бактерии осуществляют такой тип дыхания, при котором акцептором водорода (электронов) является связанный кислород. Его носители – нитраты (нитратное дыхание) или сульфаты (сульфатное дыхание). При этом за счет водорода окисляемого субстрата нитраты восстанавливаются до молекулярного азота, а сульфаты – до H2
S (рис. 34). Способность таких бактерий переносить электроны на нитраты и сульфаты связана с наличием у них цитохромов и системы переноса электронов. Это позволяет им осуществлять достаточно полное окисление субстрата и получать таким путем гораздо больше энергии, чем при брожении.1 – ФДФ-путь; 2 – ПФ-путь; 3 – КДФГ-путь; 4 – ЦТК; 5 – дыхательная цепь; 6 – фосфорилирование на уровне субстрата; 7 – окислительное фосфорилирование в дыхательной цепи; 8 – синтез мономеров; 9 – синтез полимеров
Строгие анаэробы
Главная особенность строгих анаэробов заключается в том, что их энергетический обмен происходит без участия свободного кислорода. Синтез АТФ при потреблении глюкозы в анаэробных условиях (гликолиз) происходит за счет фосфорилирования субстрата. Из одной молекулы глюкозы в этих условиях образуются две молекулы молочной кислоты, а выход энергии составляет всего 20 ккал (синтезируются две молекулы АТФ) на моль глюкозы, т. е. во много раз меньше, чем при полном окислении этого основного носителя энергии. Хотя анаэробы также мобилизуют энергию в результате окислительно-восстановительных процессов, т. е. в результате переноса водорода (электронов), но кислород для них не служит конечным акцептором электронов. Более того, молекулярный кислород оказывает на них токсическое действие, причины которого следующие:
1) у анаэробных бактерий кислород угнетает анаэробные энергообразующие реакции (эффект Пастера);
2) у строгих анаэробов отсутствует фермент каталаза, поэтому накапливающаяся в присутствии кислорода Н2
О2 оказывает на них бактерицидное действие;3) у строгих анаэробов отсутствует система регуляции окислительно-восстановительного потенциала (редокс-потенциала) – rH2
. Окислительно-восстановительный потенциал представляет собой показатель окислительно-восстановительного равновесия всех компонентов системы, находящейся в равновесии с электродами; rH2 – отрицательный логарифм гипотетического давления водорода, когда данная окислительно-восстановительная система находится в состоянии равновесия:где Ehk – найденный потенциал среды; 250 mv – разница потенциалов между каломельным и нормальным водородным электродом (считается, что каломельный электрод при температуре 20 °C на 250 mv положительнее водородного).
Показатель rH2
может варьировать от минимума – 0 (среда насыщена водородом) до максимума 41 (среда насыщена кислородом); при rH2 = 28 оба процесса находятся в динамическом равновесии.Направление и напряженность окислительно-восстановительных реакций, протекающих в бактериальной клетке, зависят от состава среды. Eh нормальной питательной среды, находящейся в контакте с воздухом, равен 0,2 – 0,4 В при рН = 7,0. Eh культуры бактерий определяется в результате конкуренции скоростей двух процессов – скорости образования восстановленных веществ и скорости образования компонентов, окисленных кислородом. Присутствие в среде окисляющих веществ повышает rH2
, а наличие веществ, обладающих восстановительными свойствами (аскорбиновая кислота, цистеин и др.), снижает его. Существуют определенные границы rH2 и рН среды, внутри которых клетки способны осуществлять метаболические реакции с определенной скоростью.