Когда движущееся тело сталкивается с телом, покоящимся на поверхности планеты, всегда имеет место трансформация качества частиц. Главным образом, трансформации подвергаются частицы на передней поверхности химических элементов, расположенных в передней части движущегося тела и частицы на задней поверхности элементов задней части покоящегося тела.
Частицы в составе движущегося тела испускают эфир задним полушарием – за счет этого тело и движется по инерции. Когда на пути у движущегося тела встает другое – покоящееся, этот испускаемый частицами эфир трансформирует все частицы, с которыми соприкасается. В том числе и саму испускающую его частицу. Он просто мешает ей испускать эфир. В итоге он остается в частице, и какая-то его часть исчезает в ней. А это ведет к трансформации.
Покоящееся тело тормозит движущееся. Особенно, если покоящееся тело твердое и тяжелее движущегося. В результате этого движущееся меняет направление своего инерционного движения – отскакивает. Смена направления движения происходит за счет того, что уже другое полушарие частицы начинает испускать эфир. Т. е. можно сказать, что движущееся тело, когда меняет направление движения, «обдает» своим эфиром покоящееся тело, и таким образом трансформирует его.
В первую очередь, как говорилось, трансформируются частицы контактирующих поверхностей тел. Каким бы твердым тело не было, и как бы сложно не было его деформировать, оно все равно при соударении сокращается – даже металлические. Это говорит о том, что частицы в передней части движущегося тела раньше останавливаются и меняют траекторию, нежели те, что ближе к задней части. В итоге, частицы передней части в какой-то момент соударения оказываются как бы «зажаты» между вслед идущими частицами собственного тела и частицами покоящегося тела (или теми частицами собственного тела, что уже поменяли направление).
Частицы на контактирующей поверхности поящегося тела в наибольшей мере трансформируются потому, что именно они в первую очередь встречают «волну эфира», испускаемую телом, меняющим курс.
15. О «параллельности» и «прямолинейности» движения тел по поверхности небесного тела
Когда мы говорим о движении вещества “параллельно”, вдоль поверхности планеты, или же говорим, что какое-либо тело движется по прямой, когда движется по поверхности планеты, не следует забывать о том, что планета имеет форму шара. А это сразу же исключает употребление понятий “параллельность” и “прямая”, когда идет речь о движении относительно поверхности небесного тела.
Конечно, если учитывать несравнимо огромную величину радиуса любого небесного тела по сравнению с очень малыми размерами тел и веществ, движущихся в их составе, можно пренебречь кривизной поверхности небесного тела. Однако для рассмотрения механизма инерционного движения, которое возникает всякий раз, когда любая элементарная частица перемещается в пространстве относительно эфирного поля, кривизну поверхности следует учитывать.
Можно изготовить площадку из достаточно плотного, слабо гнущегося материала, чья поверхность действительно будет плоской. Например, металлическую. Установить ее на опорах различной длины – их длина будет возрастать к краям. Эти опоры позволят сохранить поверхность площадки плоской – приблизительно или полностью. Вот движение по такой площадке можно считать прямолинейным – хотя бы условно.
16. Инерция – это самоподдерживающееся движение
Давайте рассмотрим, каков механизм сохранения состояния движения у отдельно взятых элементарных частиц в идеальных условиях – т. е. в абсолютно пустом пространстве.
Механизм сохранения состояния движения одинаков для частиц разного качества – с Полями Притяжения и с Полями Отталкивания.
Пусть частица покоится в пустом пространстве. Заметьте, по-настоящему покоится, а не потому что зафиксирована Полем Притяжения какого-либо объекта. Если эту частицу встретит на пути какая-либо движущаяся частица, то эфир движущейся частицы будет оказывать давление на эфир покоящейся частицы. Из-за того, что покоящаяся частица не зафиксирована никаким Полем Притяжения, какой бы ни была скорость движения частицы, она обязательно сдвинет покоящуюся частицу с места приведет ее в состояние движения). Если бы покоящаяся частица была зафиксирована Полем Притяжения, то величина давления, оказываемого движущейся частицей, должна быть больше величины давления эфира, движущегося в направлении источника Поля Притяжения и проходящего сквозь покоящуюся частицу. Однако в идеальных условиях эфиру движущейся частицы не приходится «бороться» с давлением эфира, движущегося к источнику Поля Притяжения.
Так что же происходит, когда эфир движущейся частицы давит на эфир покоящейся частицы? Каким бы Полем ни обладала частица – Притяжения или Отталкивания, в каждый момент времени ее заполняет эфир – либо входящий в нее, либо выходящий.