Таким образом мы закончим с двумя коробками равного размера (объема), которые содержат одинаковое количество «частиц». Конечно, атомы действительно ведут себя иначе, чем баскетбольные мячи или мячи для гольфа, но в этом случае (будьте уверены) наша аналогия по форме абсолютно верна. Таким образом, если мы сможем сосчитать количество малых и больших частиц в двух разных шарах, то обнаружим, что шары одинаковы по размеру и количество больших внутри одного равно количеству малых частиц внутри другого, а также что внутри довольно много оставшегося свободного пространства.
Как вы видите, частицы (атомы, молекулы или их смесь) газа расположены не так уж плотно по отношению друг к другу. Скорее они находятся в движении, перемещаясь в окружающем их вакууме. Действительно, модель атомов в свободном пространстве уже знакома нам из древнегреческих атомных теорий Демокрита и Эпикура. Закон Авогадро о равных количествах частиц для равных объемов при постоянной температуре и давлении значительно продвинул понимание природы газов. Авогадро никогда не доказывал свою теорию, он также не мог определить фактическое количество частиц при определенной температуре или давлении. Однако закон Авогадро следует из кинетической теории газов.
Основываясь на кинетической теории газов, можно рассчитать среднюю
где
Другой вывод из кинетической теории газов состоит в том, что давление
или, проще,
после подстановки одной из формул, приведенных выше, в другую. Учитывайте, что два различных газа обозначены как 1 и 2. Их соответствующие выражения для давления будут:
и
Поэтому если два разных идеальных газа имеют равные объемы, давление и температуру, то количество их частиц будет равным, так как имеется равенство
или попросту
Это и есть закон Авогадро. Однако реальные газы отличаются от идеальных газов тем, что частицы в них претерпевают воздействия притяжения и отталкивания. Как следствие, в реальных газах количество частиц равняется числу Авогадро, только когда они ведут себя «идеально», что происходит при низком давлении и/или высоких температурах.
Сегодня мы узнаем закон Авогадро по фундаментальной константе, названной
В 1909 году Жан Батист Перрен (1870–1942) впервые экспериментально определил число Авогадро, изучая броуновское движение (позже мы обсудим это более подробно), и получил результат 6,7 · 1023
частиц/моль. Он был первым, кто связал его со значением моля вещества и предложил назвать его в честь Авогадро. Сегодня значение определено более точно – 6,022 · 1023 частиц/моль[156]. Идеальный газ при 32 °F и атмосферном давлении заполнил бы объем (воздушный шар), равный 22,4 литра и содержал бы ровно 6,022 · 1023 частиц.Авогадро думал, что газ, состоящий из одного элемента (как кислород, водород, азот и т. д.), мог состоять из молекул, тогда как Дальтон настаивал, что они могли существовать только как атомы. В то время было принято считать, что атомы одного элемента отталкивают друг друга, тогда как атомы разных элементов притягивают друг друга. Идеи Авогадро явно противоречили этому.
Далее, если бы атомы одного элемента на самом деле притягивали друг друга, то было бы непонятно, что останавливало их от слияния и перехода в жидкое агрегатное состояние. Сегодня мы знаем, что атомные взаимодействия имеют разные виды и силу, что позволяет одним элементам притягивать друг друга в определенной мере.