Так, хотя можно было сомневаться в том, как Планк получил этот результат – а многие физики сомневались – даже самым заядлым скептикам было трудно представить, что он хотя бы что-то сделал неправильно. У Эйнштейна ничего такого не было. Его главным выражением было уравнение сохранения энергии, которое мы обсуждали. Но, в отличие от Планка с его спектром абсолютно черного тела, Эйнштейн не располагал высококачественными экспериментальными данными для сравнения. Ему предстояло более десяти лет ждать подобных результатов.
В 1916 году, когда они появились благодаря работе Роберта Милликена (1868–1953), тот был не очень-то признателен теории Эйнштейна:
«Уравнение Эйнштейна для фотоэффекта… в каждом случае как будто бы предсказывает наблюдаемые результаты. …И все-таки пока еще [корпускулярная] теория, с которой Эйнштейн получил свое уравнение, кажется полностью неприемлемой».
В следующей статье Милликен назвал гипотезу световых квантов Эйнштейна «смелой, если не сказать безрассудной, теорией электромагнитной световой [частицы]».
Таким образом, хотя его собственные эксперименты демонстрировали, что уравнения Эйнштейна для фотоэффекта (сохранения энергии) были верны, Милликен отказывался верить, что свет состоит из частиц, называемых фотонами. То есть, хоть Милликен и не отрицал, что его результаты подтвердили правильность уравнения Эйнштейна, он не желал верить, что лежащий в основе механизм, ответственный за уравнения, имеет что-то общее с фотонами Эйнштейна.
Но эти чувства во многом разделяли большинство физиков, и это ясно проиллюстрировал текст решения по Нобелевской премии, присужденной Эйнштейну в 1921 году: «За заслуги в теоретической физике и особенно за открытие закона фотоэлектрического эффекта».
Определенно, Эйнштейн получает признание за «закон фотоэлектрического эффекта», другими словами, за его фотоэлектрическое уравнение, а не за концепцию фотонов. Этот подход сохранится до 1923 года, когда новые экспериментальные результаты обратят практически всех в веру в существование фотонов – подробнее об этом ниже.
До этого же Эйнштейн был одинок в своих стремлениях. Непоколебимый в своей приверженности, он продолжал исследовать квантовую природу света, продвигая фотонную концепцию и заодно квантовую теорию в целом.
Пересматривая взгляды Планка
В своей статье 1905 года Эйнштейн отстранился от Планка, чтобы разработать собственный вариант квантовой теории, а именно концепцию, согласно которой свет состоит из частиц, или световых квантов, которые потом стали называться фотонами. Двумя из крупнейших неправильных представлений о содержании этой статьи являются то, что эта статья была посвящена только фотоэффекту – а она не была; и что Эйнштейн просто развивал работу Планка – тоже неверно. В 1906 году Эйнштейн переосмыслил свою работу 1905 года в духе Планка, показывая, что своем выводе Планк неявно использовал концепцию световых квантов Эйнштейна. Думая над этим, Эйнштейн сказал:
«В то время [в 1905 году, когда я впервые предложил гипотезу световых квантов] мне казалось, что в определенном смысле теория излучения Планка представляет собой аналог моей работы. Новые рассмотрения… показали мне все же, что теоретические основания, на которых зиждется теория излучения г-на Планка, отличаются от тех, которые были бы выведены из теории Максвелла и электронной теории именно потому, что теория Планка неявно использует вышеупомянутую гипотезу световых квантов».
Используя методы статистической механики, разработанные им в 1903 году, Эйнштейн напрямую вывел выражение для энтропии системы резонаторов Планка без требования использовать метод Больцмана, как делал Планк. Вместо этого все, что нужно было Эйнштейну для завершения связи с вариантом Планка, – это дальнейшее постулирование того, что энергия резонатора могла иметь значения, только равные целому кратному ε.
Получается, что если Планк пришел к этому заключению через сравнение своего вывода выражения для энтропии с полученным методом Больцмана, Эйнштейну просто нужен был свой собственный вывод и гипотеза световых квантов. Более того, Эйнштейн настаивал на том, что энергия резонатора может только меняться «скачками» посредством излучения или поглощения фотона с энергией ε =
То есть Эйнштейн предложил физический механизм взаимодействия между веществом (резонатором) и светом, а также установил взаимосвязь со своей гипотезой световых квантов. Эта более сложная картина равновесия между веществом и светом, отсутствовавшая в исходном варианте теории Планка, наделила ее реальными физическими чертами.
Природа света была колоссальным источником забот для Эйнштейна. В 1908 году он писал другу: «Я все время думаю над вопросом состава излучения… Этот квантовый вопрос настолько чрезвычайно важен и сложен, что каждому стоит заняться им».