Согласно известным на тот момент законам физики (классической физики) электрон, движущийся таким образом, излучал бы свет, что для электрона является потерей энергии. Эта потеря проявляется в виде уменьшающейся потенциальной энергии электрона, означающей, что он сдвигается к ядру.
Чтобы понять, как потенциальная энергия отрицательно заряженного электрона «ощущает» положительно заряженное ядро, представим резиновую ленту, прикрепленную одним концом к стене, когда мы начали растягивать ее за другой конец. Растягивая ее, мы достигнем момента, когда почувствуем напряжение в резинке, сопротивляющейся дальнейшему растяжению и стремящейся сжаться обратно. В этот момент потенциальная энергия очень велика, но, если мы перестанем растягивать резинку и позволим ей сжаться, сопротивляющееся напряжение уменьшится, как и потенциальная энергия.
Можно представить, что потенциальная энергия между электроном и ядром является результатом растяжения невидимой «резинки», связанной одним из концов с электроном, а другим – с ядром, зафиксированным в центре атома. Полностью упасть на ядро электрону не дает равенство натяжения «резинки» в сторону ядра и выталкивание центробежной силы наружу.
Реальная проблема состоит в том, что электрон продолжает излучать свет, тем самым теряя энергию, и становится все ближе и ближе к ядру, пока окончательно не столкнется с ядром, и атом не разрушится. Такова была судьба (классического) варианта атома, предложенного Резерфордом. А Бор вообще не беспокоился.
Благодаря своей диссертационной работе Бор был уже хорошо знаком с неудачами классической физики. Так он совсем не удивился, когда увидел, как она терпела поражение в области атомов: «Кажется, этого и стоило ожидать, поскольку, по-видимому, строго доказано, что [классическая физика] не может объяснить факты, появляющиеся в рамках проблем, касающихся отдельных атомов».
Каким образом Бор примирил на первый взгляд не вызывающий сомнения атом Резерфорда с неустойчивостью, предсказанной классической механикой? Введением новой гипотезы: «Механические основания [классической физики] не получат никаких шансов…»
Бор предположил, что
где
Вспомним, что ν в последнем выражении – это частота колебаний резонатора (опять же, ω в формуле Бора является частотой обращения электрона), а
Помимо квантования энергии связи, Бор также получил результаты, показывающие, что расстояние электрона от ядра, или размер его орбиты, также квантованы (как и его угловой, то есть орбитальный момент).
В физической картине, воплощенной в атоме Бора, электроны, окружающие ядро, находятся на дискретных орбитах с дискретными энергиями. Как и прежде, под «дискретным» мы понимаем квантованное, и для атома Бора это применимо как к орбитам, так и к энергиям, тогда как в случае резонаторов Планка квантованной была всего лишь энергия. Квантование непосредственно связано с квантовым числом
Хотя квантовое число Бора
Ко времени выдвижения теории Бора прошло больше пятидесяти лет после того, как работы Кирхгофа и Бунзена показали, что атомы излучают уникальные «отпечатки пальцев», состоящие из дискретного набора спектральных линий с теми же частотами, на которых атомы будут поглощать. Если в экспериментальной стороне спектроскопии в течение тех лет отмечался значительный прогресс, с теорией дело обстояло иначе.