Читаем Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали полностью

Согласно известным на тот момент законам физики (классической физики) электрон, движущийся таким образом, излучал бы свет, что для электрона является потерей энергии. Эта потеря проявляется в виде уменьшающейся потенциальной энергии электрона, означающей, что он сдвигается к ядру.

Чтобы понять, как потенциальная энергия отрицательно заряженного электрона «ощущает» положительно заряженное ядро, представим резиновую ленту, прикрепленную одним концом к стене, когда мы начали растягивать ее за другой конец. Растягивая ее, мы достигнем момента, когда почувствуем напряжение в резинке, сопротивляющейся дальнейшему растяжению и стремящейся сжаться обратно. В этот момент потенциальная энергия очень велика, но, если мы перестанем растягивать резинку и позволим ей сжаться, сопротивляющееся напряжение уменьшится, как и потенциальная энергия.

Можно представить, что потенциальная энергия между электроном и ядром является результатом растяжения невидимой «резинки», связанной одним из концов с электроном, а другим – с ядром, зафиксированным в центре атома. Полностью упасть на ядро электрону не дает равенство натяжения «резинки» в сторону ядра и выталкивание центробежной силы наружу.

Реальная проблема состоит в том, что электрон продолжает излучать свет, тем самым теряя энергию, и становится все ближе и ближе к ядру, пока окончательно не столкнется с ядром, и атом не разрушится. Такова была судьба (классического) варианта атома, предложенного Резерфордом. А Бор вообще не беспокоился.

Благодаря своей диссертационной работе Бор был уже хорошо знаком с неудачами классической физики. Так он совсем не удивился, когда увидел, как она терпела поражение в области атомов: «Кажется, этого и стоило ожидать, поскольку, по-видимому, строго доказано, что [классическая физика] не может объяснить факты, появляющиеся в рамках проблем, касающихся отдельных атомов».

Каким образом Бор примирил на первый взгляд не вызывающий сомнения атом Резерфорда с неустойчивостью, предсказанной классической механикой? Введением новой гипотезы: «Механические основания [классической физики] не получат никаких шансов…»

Бор предположил, что энергия связи электрона – энергия, требуемая для того, чтобы вывести электрон из самого атома, его удерживающего – может принимать одно из значений дискретного набора, а не любое. Другими словами, так же как и в случае резонаторов Планка, энергии связи электронов принимают квантованные значения:

= Cnhω,

где Eс – энергия связи, C – постоянная величина, ω – частота обращения электрона по орбите, которая просто равна скорости, деленной на полную длину орбиты (предполагалось, что орбита круговая, так что ее длина – просто длина окружности), а n = 1, 2, 3 и т. д. Поразительным в этой формуле является ее сходство с выражением Планка для энергии резонатора:

Eрезонатора = mhν.

Вспомним, что ν в последнем выражении – это частота колебаний резонатора (опять же, ω в формуле Бора является частотой обращения электрона), а m = 1, 2, 3 и т. д. То есть Бор проводит формальную аналогию с квантом энергии Планка и тем самым дает ей реальный физический смысл. В последующие годы Бор замечал: «В воздухе витала идея попробовать применить в этом случае предположения Планка».

Помимо квантования энергии связи, Бор также получил результаты, показывающие, что расстояние электрона от ядра, или размер его орбиты, также квантованы (как и его угловой, то есть орбитальный момент).

В физической картине, воплощенной в атоме Бора, электроны, окружающие ядро, находятся на дискретных орбитах с дискретными энергиями. Как и прежде, под «дискретным» мы понимаем квантованное, и для атома Бора это применимо как к орбитам, так и к энергиям, тогда как в случае резонаторов Планка квантованной была всего лишь энергия. Квантование непосредственно связано с квантовым числом n, и большее значение n соответствует орбите, расположенной дальше от ядра с большей по абсолютному значению энергией связи.

Хотя квантовое число Бора n соответствует m из выражения Планка, его роль более значительна. Квантовое число описывает реальное квантовое состояние электрона, и, согласно гипотезе Бора, орбита электрона устойчива только в этих квантовых состояниях, поэтому он не станет неизбежно снижаться, приближаясь по спирали к ядру. Заметим, что, в отличие от выражения Планка, где m может равняться нулю, в формуле Бора n не может быть нулевым, иначе это соответствовало бы квантовому состоянию, в котором электрон уже упал на ядро, и опять-таки мы бы пришли к гибели атома.

Ко времени выдвижения теории Бора прошло больше пятидесяти лет после того, как работы Кирхгофа и Бунзена показали, что атомы излучают уникальные «отпечатки пальцев», состоящие из дискретного набора спектральных линий с теми же частотами, на которых атомы будут поглощать. Если в экспериментальной стороне спектроскопии в течение тех лет отмечался значительный прогресс, с теорией дело обстояло иначе.

Перейти на страницу:

Похожие книги

Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература
Избранные труды о ценности, проценте и капитале (Капитал и процент т. 1, Основы теории ценности хозяйственных благ)
Избранные труды о ценности, проценте и капитале (Капитал и процент т. 1, Основы теории ценности хозяйственных благ)

Книга включает наиболее известные произведения выдающегося экономиста и государственного деятеля конца XIX — начала XX века, одного из основоположников австрийской школы Ойгена фон Бём-Баверка (1851—1914) — «Основы теории ценности хозяйственных благ» и «Капитал и процент».Бём-Баверк вошел в историю мировой экономической науки прежде всего как создатель оригинальной теории процента. Из его главного труда «Капитал и процент» (1884— 1889) был ранее переведен на русский язык лишь первый том («История и критика теорий процента»), но и он практически недоступен отечественному читателю. Работа «Основы теории ценности хозяйственных благ» (1886), представляющая собой одно из наиболее удачных изложений австрийского варианта маржиналистской теории ценности, также успела стать библиографической редкостью. В издание включены также избранные фрагменты об австрийской школе из первого издания книги И. Г. Блюмина «Субъективная школа в политической экономии» (1928).Для преподавателей и студентов экономических факультетов, аспирантов и исследователей в области экономических наук, а также для всех, кто интересуется историей экономической мысли.УДК 330(1-87)ББК 65.011.3(4Гем)E-mail для отзывов и предложений по серии: economics@eksmo.ru ISBN 978-5-699-22421-0

Ойген фон Бём-Баверк

Научная литература / Прочая научная литература / Образование и наука
Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека
Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека

Бернд Хайнрих – профессор биологии, обладатель мирового рекорда и нескольких рекордов США в марафонских забегах, физиолог, специалист по вопросам терморегуляции и физическим упражнениям. В этой книге он размышляет о спортивном беге как ученый в области естественных наук, рассказывает о своем участии в забеге на 100 километров, положившем начало его карьере в ультрамарафоне, и проводит параллели между человеком и остальным животным миром. Выносливость, интеллект, воля к победе – вот главный девиз бегунов на сверхмарафонские дистанции, способный привести к высочайшим достижениям.«Я утверждаю, что наши способность и страсть к бегу – это наше древнее наследие, сохранившиеся навыки выносливых хищников. Хотя в современном представителе нашего вида они могут быть замаскированы, наш организм все еще готов бегать и/или преследовать воображаемых антилоп. Мы не всегда видим их в действительности, но наше воображение побуждает нас заглядывать далеко за пределы горизонта. Книга служит напоминанием о том, что ключ к пониманию наших эволюционных адаптаций – тех, что делают нас уникальными, – лежит в наблюдении за другими животными и уроках, которые мы из этого извлекаем». (Бернд Хайнрих)

Берндт Хайнрих , Бернд Хайнрих

Научная литература / Учебная и научная литература / Образование и наука