Итак, микроскоп работает, потому что фотон (идущий от источника света) отскочил (отразился) от объекта (вроде электрона) и в конце концов прошел через линзу, за которой чей-то глаз или некоторый другой детектор его замечает. Из классической волновой оптики уже было известно, что неопределенность (разрешающая способность) положения объекта
Когда фотон отскакивает от электрона, то при столкновении они обмениваются импульсом. Импульс, потерянный фотоном, будет по модулю равен приобретенному электроном — суммарный импульс сохраняется. Ясно, что если мы можем определить, насколько изменился импульс фотона, тогда мы сможем определить импульс электрона
Ой, ну подождите, ведь неопределенность в положении электрона обратно пропорциональна диаметру линзы, и уменьшение ее диаметра приведет к большей неопределенности в положении. Для решения этой проблемы мы могли бы использовать фотон с меньшей длиной волны. К сожалению, оказывается, что это увеличит неопределенность импульса, благодаря — вы угадали — квантовой природе импульса фотона. Гейзенберг смог использовать свой подход матричной механики, чтобы показать, что определенную пару величин, характеризующих свойства (например, координата и составляющая импульса, направленная вдоль той же оси, от которой данная координата отсчитывается), нельзя определить с произвольной точностью. А именно он обнаружил, что произведение их неопределенностей не может быть меньше, чем постоянная Планка[213]. Это означает, что если мы получаем более точные знания об одной из характеристик, то в результате наше знание о соответствующей дополняющей характеристике становится меньше. Итак, мы знаем одну характеристику почти абсолютно точно — и поэтому о другой не знаем совсем ничего; или, в качестве компромисса, знаем немного — об обоих.
Это не имеет никакого отношения к нашим возможностям (или их отсутствию) измерения этих величин. Наоборот (вернемся к нашему примеру с микроскопом), это означает, что квантовые частицы наподобие электрона просто не обладают точным положением и точным импульсом в один и тот же момент времени; для них эти характеристики существуют только
Опыт с двумя щелями
Представим «электронную пушку», стреляющую электронами в направлении экрана с двумя отверстиями (или щелями), которые находятся от нее на одинаковом расстоянии