Читаем Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали полностью

Итак, микроскоп работает, потому что фотон (идущий от источника света) отскочил (отразился) от объекта (вроде электрона) и в конце концов прошел через линзу, за которой чей-то глаз или некоторый другой детектор его замечает. Из классической волновой оптики уже было известно, что неопределенность (разрешающая способность) положения объекта непосредственно связана с длиной волны используемого фотона. Так, если вы хотите добиться лучшего разрешения положения объекта, вам нужно использовать фотон меньшей длины волны. Иначе говоря, если вы хотите измерить нечто, вам нужно использовать «линейку» с более точными, или меньшими, делениями. Более того, было также известно, что неопределенность положения обратно пропорциональна диаметру линзы, используемой для того, чтобы собрать упомянутые нами фотоны. Опять же, все это следует из классической волновой оптики — пока еще ничего квантового не происходит, кроме того, что мы называем свет фотоном. Теперь, когда мы справились с определением положения электрона, давайте перейдем к импульсу.

Когда фотон отскакивает от электрона, то при столкновении они обмениваются импульсом. Импульс, потерянный фотоном, будет по модулю равен приобретенному электроном — суммарный импульс сохраняется. Ясно, что если мы можем определить, насколько изменился импульс фотона, тогда мы сможем определить импульс электрона до столкновения[212], что даст нам и положение, и импульс электрона одновременно. Однако есть небольшая проблема. На самом деле мы не знаем направление полета падающего фотона после того, как он отскочит от электрона. Мы точно знаем только то, что он принадлежал «диапазону направлений», при движении в каждом из которых он в результате пройдет через линзу, тем самым позволяя нам определить положение электрона (в пределах неопределенности, отмеченной выше). А теперь этот диапазон направлений можно сузить, чтобы уменьшить неопределенность направления импульса фотона. Все, что нам нужно сделать, — это уменьшить диаметр линзы микроскопа.

Ой, ну подождите, ведь неопределенность в положении электрона обратно пропорциональна диаметру линзы, и уменьшение ее диаметра приведет к большей неопределенности в положении. Для решения этой проблемы мы могли бы использовать фотон с меньшей длиной волны. К сожалению, оказывается, что это увеличит неопределенность импульса, благодаря — вы угадали — квантовой природе импульса фотона. Гейзенберг смог использовать свой подход матричной механики, чтобы показать, что определенную пару величин, характеризующих свойства (например, координата и составляющая импульса, направленная вдоль той же оси, от которой данная координата отсчитывается), нельзя определить с произвольной точностью. А именно он обнаружил, что произведение их неопределенностей не может быть меньше, чем постоянная Планка[213]. Это означает, что если мы получаем более точные знания об одной из характеристик, то в результате наше знание о соответствующей дополняющей характеристике становится меньше. Итак, мы знаем одну характеристику почти абсолютно точно — и поэтому о другой не знаем совсем ничего; или, в качестве компромисса, знаем немного — об обоих.

Это не имеет никакого отношения к нашим возможностям (или их отсутствию) измерения этих величин. Наоборот (вернемся к нашему примеру с микроскопом), это означает, что квантовые частицы наподобие электрона просто не обладают точным положением и точным импульсом в один и тот же момент времени; для них эти характеристики существуют только расплывчато, неопределенно. Давайте осознаем, что если Борн использовал квантовую вероятность, чтобы устранить из квантовой механики детерминизм, то в принципе неопределенности Гейзенберга это происходит безо всякого обращения к понятиям, связанным с вероятностью. Поэтому они выступают как два независимых удара против причинности. Возможно самым лучшим примером, иллюстрирующим квантовую вероятность и корпускулярно-волновой дуализм, является опыт с двумя щелями.

<p>Опыт с двумя щелями</p>

Представим «электронную пушку», стреляющую электронами в направлении экрана с двумя отверстиями (или щелями), которые находятся от нее на одинаковом расстоянии D, а также на одинаковом расстоянии D′ от центра экрана (см. рис. 16.1). Электронная пушка установлена на башне, которая движется вперед и назад, а также из стороны в сторону, что очень похоже на движение вращающегося вентилятора. С учетом такого движения ясно, что мы не ставим перед собой цель попасть электронами в щели; вместо этого мы просто стреляем очень много раз случайным образом. Сами щели имеют одинаковые размеры, достаточно большие, чтобы через них мог пройти электрон.

Перейти на страницу:

Все книги серии Удивительная Вселенная

Астрофизика с космической скоростью, или Великие тайны Вселенной для тех, кому некогда
Астрофизика с космической скоростью, или Великие тайны Вселенной для тех, кому некогда

Темное вещество, гравитация, возможность межгалактических полетов и Теория Большого взрыва… Изучение тайн Вселенной подобно чтению захватывающего романа. Но только если вы хорошо понимаете физику, знаете, что скрывается за всеми сложными терминами и определениями. В самых головоломных вопросах науки вам поможет разобраться Нил Деграсс Тайсон – один из самых авторитетных и в то же время остроумных астрофизиков нашего времени. Он обладает особым даром рассказывать о сложнейших научных теориях понятно, интересно и с юмором.Новая книга Нила Тайсона – это очередное захватывающее путешествие в мир современной науки. Вы узнаете о самых последних открытиях, сможете проследить секунда за секундой рождение Вселенной, узнаете новейшие данные о темной материи и происхождении Земли. И чтобы понять все это, вам не понадобится никакого специального образования: достаточно даже слегка подзабытого курса средней школы и любопытства. А закрыв эту книгу, вы поймете, что астрофизика не так сложна, как казалось! Это полезное и увлекательное чтение для всей семьи. Читайте, чтобы не отстать от научно-технического прогресса.

Нил Деграсс Тайсон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Всё и разум
Всё и разум

Знаменитый во всем мире популяризатор науки, ученый, инженер и популярный телеведущий канала Discovery, Билл Най совершил невероятное — привил любовь к физике всей Америке. На забавных примерах из собственной биографии, увлекательно и с невероятным чувством юмора он рассказывает о том, как наука может стать частью повседневной жизни, учит ориентироваться в море информации, правильно ее фильтровать и грамотно снимать «лапшу с ушей».Читатель узнает о планах по освоению Марса, проектировании «Боинга», о том, как выжить в автокатастрофе, о беспилотных автомобилях, гениальных изобретениях, тайнах логарифмической линейки и о других спорных, интересных или неразрешимых явлениях науки.«Человек-физика» Билл Най научит по-новому мыслить и по-новому смотреть на мир. Эта книга рассчитана на читателей всех возрастов, от школьников до пенсионеров, потому что ясность мысли — это модно и современно!

Билл Най

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Научные сказки периодической таблицы. Занимательная история химических элементов от мышьяка до цинка
Научные сказки периодической таблицы. Занимательная история химических элементов от мышьяка до цинка

Таблица Менделеева занимает в нашем воображении такое же прочное место, как и алфавит, календарь и знаки зодиака. Но сами химические элементы, помимо нескольких самых распространенных: железа, углерода, меди, золота, – покрыты завесой тайны. По большей части мы не знаем, как они выглядят, в каком виде встречаются в природе, почему так названы и чем полезны для нас.Добро пожаловать на головокружительную экскурсию по страницам истории и литературы, науки и искусства! «Научные сказки» познакомят вас с железом, которое падает с неба, и расскажут о скорбном пути неонового света. Вы узнаете, как гадать на свинце и почему ваш гроб в один далеко не прекрасный день может оказаться цинковым. Вы обнаружите, что между костями вашего скелета и Белым домом в Вашингтоне есть самая прямая связь – как и между светом уличного фонаря и солью у вас на столе.Жизнь человечества строится на химических элементах – от древних цивилизаций до современной культуры, от кислорода, о котором знают все, до фосфора в моче, о котором известно лишь специалистам. Они повсюду. «Научные сказки» раскроют их сенсационные секреты и расскажут о бурном прошлом, а читателя ждет увлекательное путешествие по шахтам и художественным студиям, по фабрикам и соборам, по лесам и морям, где он узнает всю правду об этих чудесных и загадочных строительных кирпичиках Вселенной.

Хью Олдерси-Уильямс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Письма астрофизика
Письма астрофизика

Эта книга не только о том, как устроена Вселенная, хотя, казалось бы, разговоров как раз на эту тему следует ожидать от увлеченного астрофизика. Все дело в том, что поклонники и противники Нила Деграсса Тайсона в своих письмах спрашивают его не только об инопланетной жизни, звездных системах, путешествиях в пространстве, параллельных вселенных и прочих космических штучках. Они хотят знать, как относиться к теории эволюции, как построить вечный двигатель, когда ждать конца света, как пережить утрату близкого человека, изменить свою жизнь… И автор осторожно делится своим мнением на этот счет, обнаруживая не только широкий кругозор и интеллигентное чувство юмора – о котором всем известно, – но также и мудрость, и чуткость, и простоту.

Нил Деграсс Тайсон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука