Когда вы едете на машине, двигатель выделяет тепло в окружающую среду, потому что этого требуют законы природы (это компенсация, которую требует природа за то, что вы пользуетесь автомобилем). Поэтому невозможно использовать абсолютно все топливо (энергию) для работы. Более того, будет возникать дополнительная потеря тепла из-за разного рода трений внутри двигателя вашего автомобиля. И поскольку, согласно Клаузиусу, энтропия — это «отношение тепла к температуре», природа снова нашла способ приблизить ее значение к максимуму.
Хотя определение энтропии у Клаузиуса достаточно точное, оно не является полным. Клаузиус пытался объяснить энтропию с точки зрения микроскопических частиц, молекул и атомов, но его попытки были безуспешными. Максвелл же сделал первые шаги в этом направлении. Он продемонстрировал, что атомы газа двигаются на разных скоростях, ограниченных определенным диапазоном, или распределением. По сути, скорость атомов в этом диапазоне такова, что малое их количество перемещается быстрее или медленнее основной массы, которая движется со средней скоростью. Это был первый случай, когда статистический подход использовали для описания физических свойств системы. Более того, он избавлял от устрашающей и со всех практических точек зрения невыполнимой задачи учитывать все столкновения внутри системы атомов газа.
Ранее мы говорили, что при комнатной температуре и давлении шар, наполненный гелием, содержит приблизительно 1023 атомов, которые двигаются со средней скоростью около 4 500 км/ч, при этом отдельный атом сталкивается миллиарды раз в секунду с другими атомами. Как вообще можно надеяться точно учесть все это?
Максвелл продемонстрировал, что это и не нужно, таким образом открыв дорогу Больцману. Тот показал, что подход Максвелла применим не только к скорости атомов или их кинетической энергии, но и к общей энергии системы в распределении Больцмана. Это решение стало революционным.
Применяя распределение Больцмана, можно рассчитать множество наблюдаемых свойств системы. Таким образом, хотя мы и не видим атомы и молекулы, теория Больцмана основывается на их существовании, благодаря которому мы наблюдаем видимые свойства объекта. Однако во времена Больцмана существование молекул и атомов все еще было предметом жарких споров, и он постоянно защищал свою теорию.
Сегодня мы принимаем как данность, что вещество состоит из атомов и молекул. Тем не менее история атома, как и теорий и экспериментов, благодаря которым он был открыт, — поистине увлекательное повествование и тема для части 3.
Часть 3
Частицы: атомы
Глава 9
Предположения об атомах
…мы обнаруживаем, что две молекулы (или атома) одного вида, например водорода, обладают одинаковыми свойствами, хотя одна содержалась в угле и хранилась неведомо сколько в толще земной породы, а другая — была «заперта» в железном метеорите и после неизвестных странствий по небесам упала в руки земного химика.
Древнегреческие философы сыграли значительную роль в формировании начальной теории об атомах. Несколько древних философов создали теорию материи, одна из которых даже предполагала существование фундаментальных строительных блоков, из которых были сделаны не только живые существа и неживые предметы, но и сверхъестественные. Тем не менее их рассуждения были скорее умозрительными и философскими, нежели научными. И хотя они попытались объяснить природу материи и ее состав, их реальная цель состояла в том, чтобы донести до древних греков нечто, глубоко беспокоившее их: природу постоянства и изменений. К сожалению, эти «теории» материи прожили недолго. Хотя был новый всплеск в Средние века и Ренессанс, только в XVII веке они получили новый импульс.
Постоянство и перемены
Греческий философ Гераклит (ок. 540–475 до н. э.) был уроженцем греческого города Эфес, расположенного на побережье Малой Азии (современной Турции). Мы знаем о Гераклите главным образом из уцелевших фрагментов работ Платона и Аристотеля, где его цитируют для опровержения, а также из работ Диогена Лаэртского (ок. III века), который писал биографии греческих философов и рассказал о жизни Гераклита в целом.