Читаем Менеджмент. Учебник полностью

Формула, по которой мы производили расчет, имеет в теории вероятностей специальное название – формула полной вероятности. Она может пригодиться при определении вероятности безотказной работы в течение заданного времени не только приборов, но и любых других современных машин или механизмов – промышленных автоматов, электронно-вычислительных машин и т. д.


ПРИМЕР 7

Предположим, вы задались целью обязательно решить некую трудную предпринимательскую задачу, например добиться большой прибыли, выхода на зарубежный рынок, высокого качества товаров.

Задачи такие обычно решаются не сразу, для этого нужно сделать несколько попыток. Вам, конечно, интересно, сколько таких попыток потребуется.

Вероятность самого события можно рассчитать по классической формуле. Так, если вас интересует вероятность получения определенной нормы прибыли, нужно количество случаев, при которых эта прибыль была вами получена в прошлом (например, 4 раза), разделить на общее число рассматриваемых случаев (например, 20). Тогда искомая вероятность будет равна = 0,2, или 20 % .

Но нас интересует не эта цифра. Наша цель – определить, сколько нужно сделать попыток п(на языке теории вероятностей – сколько нужно произвести испытаний), чтобы хотя бы одна из них (больше не требуется) гарантированно дала требуемую норму прибыли. Для решения этой задачи теория вероятности предлагает простую формулу:




где Рц есть вероятность, с которой мы хотим добиться своей цели – получить нужную норму прибыли, а Рс –вероятность самого события – получения требуемой прибыли.

По данной формуле рассчитана простая, но весьма полезная таблица, позволяющая ответить на вопрос, с которого мы начали (табл. 8.7).



Таблица 8.7


Количество попыток для достижения цели



Вероятность события, %


Вероятность с которой мы хотим добиться цели, %




5


10


20


30


40


50


60


70


80


90


Около 100


5


1


2


4


7


10


14


18


24


31


45


76


10



1


2


3


4


7


8


11


15


22


37


20


-


-


1


2


2


3


4


6


7


10


17


30





1


1


2


3


3


5


6


11


40





-


1


1


2


2


3


4


8


50





_



1


1


2


2


3


6


60








1


1


2


2


4


70









1


1


2


3


80










1


1


2


90





-







1


2


Около 100












1




Входя в таблицу с нашей вероятностью события – получения прибыли 20 % – и задаваясь по вкусу желаемой вероятностью достижения цели, скажем, 90 %, получим требуемое число попыток, равное 10. Это означает, что на 10 попыток хотя бы одна будет наверняка счастливой.

Хотите гарантии, близкой к 100 %, – увеличьте число попыток до 17.

Расчет вероятности интересующего нас события не менее одного раза имеет весьма широкую область применения. Подобные расчеты необходимы, например, при определении качества различных приборов: какова вероятность того, что хотя бы один узел сложного устройства может выйти из строя? Они позволяют также определить, сколько понадобится испытаний, чтобы прийти хотя бы раз к нужному результату. Скажем, сколько раз нужно прочитать документ, чтобы хотя бы один раз не пропустить ошибки, и т. п.

Итак, уже сегодня, в настоящем времени есть способы пролить свет на завтрашний день, на то, что будет. И для того чтобы предвидеть, нужно уметь этими способами пользоваться.


8.4. Методы прогнозирования



Для проникновения в тайны будущего разработаны специальные методы, объединенные общим названием – прогностика.

Прогностика– наука о законах и способах прогнозирования. Она помогает увидеть, как будет выглядеть мир завтрашнего дня.

10 ноября 1845 года молодой французский ученый Леверье объявил Парижской академии наук, что он открыл новую планету за Ураном. Между тем Леверье не был астрономом и на небо не заглядывал. Его стихией была математика, свою планету он просто вычислил.

Сравнивая рассчитанный по формулам путь планеты Уран с ее фактическим движением, Леверье заметил, что этот спутник Солнца не подчиняется общим законам небесной механики и отклоняется в сторону.

В подобных случаях, часто бывающих и в жизни (вспомним любой детектив), оказывается, что есть некто, сбивающий положительного героя с правильного курса. Поэтому Леверье предположил существование некой неизвестной планеты, заставляющей Уран нарушать правила небесного движения. И совсем как в детективном романе, ученый предсказал, где следует искать возмутителя спокойствия: если направить телескоп в рассчитанную им точку неба, и там можно будет увидеть до сих пор неизвестную планету.

23 сентября 1846 года немецкий профессор Галле не поленился направить в эту точку свой телескоп, и... школьникам теперь приходите запоминать на одно название больше: прибавилась планета Нептун.

Проследим, как Леверье пришел к своем удивительному предсказанию. Ход его рассуждений был примерно таков.

Во-первых, раз есть общий закон движении планет, то ему должна подчиняться каждая отдельная планета, в том числе и Уран. Такой ход мысли от общего к отдельному, частному, называется дедукцией.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже