...
Р
i +1 = Мi ,где Мi =
α Хi + (1 – α) Мi-j, P
i +1 – прогноз;Мi
– экспоненциально сглаженное среднее в период i ;Xi
– исходный временной ряд;α – параметр сглаживания (0 ≤ α ≤ 1).
Экспоненциальное сглаживание с учетом линейного тренда использует следующие соотношения:
...
Рi
= Мi + Тi ,где М
= α Xi + (1– α) M i -1 + T i -1;Т=
γ × Δ Мi + (1 – γ) T i -1;γ – коэффициент сглаживания (от 0 до 1);
Δ Мi
= Мi – М i -1Тi
– экспоненциально сглаженное значение тренда;Δ Мi
– оценка величины тренда в i -м периоде.Экспоненциальное сглаживание с учетом сезонной аддитивной компоненты основано на расчете по следующим формулам:
...
P
i +1 = Mi + Bi + d, где Мi =
α Xi + (1 – α) M i -1Bi
= B i -1 + (1 – β) ei ;d
– сезонный лаг;е
– ошибка прогноза в текущий момент, которая определяется как разность между фактом и прогнозом данных в период i ;Вi
– величина сезонной компоненты.Метод корреляционно-регрессионного анализа построен на использовании моделей причинного прогнозирования, которые содержат ряд переменных, имеющих отношение к предсказываемой переменной. После определения связи между этими переменными строится статистическая модель, которая и используется для прогноза.
Принятие решений в условиях определенности представляет собой поиск, оценку и отбор альтернатив, исходя из существования в будущем конкретных ситуаций, состояния и факторов внешней среды. В этом случае ЛПР выбирает альтернативу с наилучшим результатом (исходом), который выражается либо в максимуме дохода, либо в минимуме затрат. Такой выбор называют оптимизационным, а используемые методы называют методами оптимизации. К ним относят методы предельного анализа, линейное программирование и экономический анализ прибыли.
Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде. В этом случае ЛПР должно сделать выбор альтернативы ( Аi ), не имея точного представления о факторах внешней среды и их влиянии на результат. В этих условиях исход, результат каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способно предвидеть ЛПР. Для предоставления и анализа результатов выбранных альтернативных стратегий используют матрицу решений, называемую также платежной матрицей. Пример матрицы решений приведен в табл. 5.3.Таблица 5.3
Матрица решений А1, А2, А3
– альтернативные стратегии действий; S1, S2, S3 – состояние экономики (стабильность, спад, рост и др.).Числа в ячейках матрицы представляют собой результаты реализации стратегии Аi
в условиях Sj. При этом в условиях риска вероятность наступления Sj известна, а в условиях неопределенноcти эта вероятность может быть определена субъективно, в зависимости от того, какой информацией располагает ЛПР. Методы принятия решений в условиях риска используют теорию выбора, получившую название теории полезности. В соответствии с этой теорией ЛПР выбирает Аi
из совокупности Аi (I = 1 … n ), если она максимизирует ожидаемую стоимость его функции полезности Yij В условиях риска при принятии решения основным моментом является определение вероятности наступления состояния среды Sj,
т. е. степени риска.Существует два основных подхода к определению данного показателя: метод дедукции и статистический анализ данных. Метод дедукции, как известно, не нуждается в экспериментировании, а статистический анализ данных предполагает наличие экспериментов в прошлом и определяет частоту наступления события, которую и принимают за вероятность. После определения вероятности наступления состояния среды Sj определяют ожидаемую стоимость реализации каждой альтернативы, которая представляет собой средневзвешенную стоимость Е(х): ...
Е(х)
= Р1х2 + Р2х2 + … + Рnхn = Ʃ Рiхi, где хi
– результат реализации Аi ;Рi
– вероятность реализации Ai в условиях Sj. Оптимальной стратегией является та, которая обеспечивает наибольшую ожидаемую стоимость.
...
Е(х) =
Ʃ Рiхi => maxпри Ʃ Рi
= 1.