Читаем Менеджмент: учебный курс полностью

...

Р i +1 = Мi ,

где Мi = α Хi + (1 – α) Мi-j,

P i +1 – прогноз;

Мi – экспоненциально сглаженное среднее в период i ;

Xi – исходный временной ряд;

α – параметр сглаживания (0 ≤ α ≤ 1).

Экспоненциальное сглаживание с учетом линейного тренда использует следующие соотношения:

...

Рi = Мi + Тi ,

где М = α Xi + (1– α) M i -1 + T i -1;

Т= γ × Δ Мi + (1 – γ) T i -1;

γ – коэффициент сглаживания (от 0 до 1);

Δ Мi = Мi М i -1

Тi – экспоненциально сглаженное значение тренда;

Δ Мi – оценка величины тренда в i -м периоде.

Экспоненциальное сглаживание с учетом сезонной аддитивной компоненты основано на расчете по следующим формулам:

...

P i +1 = Mi + Bi + d,

где Мi = α Xi + (1 – α) M i -1

Bi = B i -1 + (1 – β) ei ;

d – сезонный лаг;

е – ошибка прогноза в текущий момент, которая определяется как разность между фактом и прогнозом данных в период i ;

Вi – величина сезонной компоненты.

Метод корреляционно-регрессионного анализа построен на использовании моделей причинного прогнозирования, которые содержат ряд переменных, имеющих отношение к предсказываемой переменной. После определения связи между этими переменными строится статистическая модель, которая и используется для прогноза.

Принятие решений в условиях определенности представляет собой поиск, оценку и отбор альтернатив, исходя из существования в будущем конкретных ситуаций, состояния и факторов внешней среды. В этом случае ЛПР выбирает альтернативу с наилучшим результатом (исходом), который выражается либо в максимуме дохода, либо в минимуме затрат. Такой выбор называют оптимизационным, а используемые методы называют методами оптимизации. К ним относят методы предельного анализа, линейное программирование и экономический анализ прибыли.

Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде. В этом случае ЛПР должно сделать выбор альтернативы ( Аi ), не имея точного представления о факторах внешней среды и их влиянии на результат. В этих условиях исход, результат каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способно предвидеть ЛПР. Для предоставления и анализа результатов выбранных альтернативных стратегий используют матрицу решений, называемую также платежной матрицей. Пример матрицы решений приведен в табл. 5.3.

Таблица 5.3 Матрица решений

А1, А2, А3 – альтернативные стратегии действий; S1, S2, S3 – состояние экономики (стабильность, спад, рост и др.).

Числа в ячейках матрицы представляют собой результаты реализации стратегии Аi в условиях Sj. При этом в условиях риска вероятность наступления Sj известна, а в условиях неопределенноcти эта вероятность может быть определена субъективно, в зависимости от того, какой информацией располагает ЛПР.

Методы принятия решений в условиях риска используют теорию выбора, получившую название теории полезности. В соответствии с этой теорией ЛПР выбирает Аi из совокупности Аi (I  = 1 … n ), если она максимизирует ожидаемую стоимость его функции полезности Yij

В условиях риска при принятии решения основным моментом является определение вероятности наступления состояния среды Sj, т. е. степени риска.

Существует два основных подхода к определению данного показателя: метод дедукции и статистический анализ данных. Метод дедукции, как известно, не нуждается в экспериментировании, а статистический анализ данных предполагает наличие экспериментов в прошлом и определяет частоту наступления события, которую и принимают за вероятность. После определения вероятности наступления состояния среды
Sj определяют ожидаемую стоимость реализации каждой альтернативы, которая представляет собой средневзвешенную стоимость Е(х):

...

Е(х) = Р1х2 + Р2х2 + … + Рnхn = Ʃ Рiхi,

где хi – результат реализации Аi ;

Рi – вероятность реализации Ai в условиях Sj.

Оптимальной стратегией является та, которая обеспечивает наибольшую ожидаемую стоимость.

...

Е(х) = Ʃ Рiхi => max

при Ʃ Рi = 1.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже