Читаем Металлы, которые всегда с тобой полностью

Цель проекта не ограничивается созданием катализаторов для фиксации азота в мягких условиях. Она включает разработку эффективных синтезов других вещёств, например гидразина. Это соединение из двух атомов азота и четырёх атомов водорода представляет собой высококалорийное топливо, при сгорании которого получаются только азот и вода. Таким образом, загрязнения окружающей среды не происходит. Конечно, было бы весьма заманчиво использовать в автомобиле вместо бензина гидразин, но он пока ещё очень дорог.

Несколько лет назад А. Е. Шилов и Г. И. Лихтенштейн предложили сравнительно простую схему действия нитрогеназы. Молекула азота проникает внутрь фермента через щель, соответствующую её размерам, и там активируется электронами восстановителя, которые, словно эстафеты, передаются по цепям молибдено- и железосодержащих центров. Активацию усиливают также и группировки серы. В качестве восстановителя выступает водород, который, в свою очередь, активируется другими ферментами.

Дальнейшие исследования экстракций из различных бактерий привели к открытиям и других железосодержащих ферментов. В начале 60-х годов был выделен фер-редоксин с молекулярной массой 6 тыс. В нем помимо железа роль активных центров играет и сера. Как видим, во всех катализаторах сохраняется принцип множественности компонентов. Интереснейшим свойством ферре-доксина оказалось то, что он имеет наиболее отрицательный потенциал среди природных переносчиков электронов. В 1965 году были открыты ещё два белка, содержащих железо и выполняющих функции переносчиков электронов. Это так называемый парамагнитный белок с молекулярной массой 24 тыс. и рубредоксин, масса которого составляет 6 тыс. В последнее время стали известны и другие железо содержащие белки, функции которых ещё до конца не выяснены.

Вот какая «железная рать» ополчилась против инертной молекулы азота.

<p>Пока только в пробирке</p>

Биологическая фиксация азота вызывала у специалистов не только восхищение, но и немалую досаду от того, что им не удавалось с такой лёгкостью, с какой этот процесс происходит у микроорганизмов, воспроизводить его хотя бы в лаборатории. Ясно было одно: нужно следовать по пути природы. Первым, кто это понял, был, пожалуй, академик А. Н. Бах. Ещё в 1934 году он писал: «...мы надеемся путём теоретического изучения сопряжённого действия биологических окислительно-восстановительных катализаторов, обусловливающего связывание атмосферного азота бактериями, выявить наиболее благоприятные условия для технического синтеза аммиака». Ну чем не химическая бионика? Таким и только таким образом можно было как-то приблизиться к решению одной из насущных проблем человечества — эффективного производства связанного азота. В лаборатории это удалось осуществить ровно через 30 лет.

В 1964 году в Институте элементоорганических соединений АН СССР под руководством доктора химических наук М. Е. Вольпина было сделано сенсационное открытие. В присутствии соединений переходных металлов: титана, ванадия, хрома, молибдена или железа азот активируется и при обычных условиях образует комплексные соединении, |>лслагаемые водой с выделением аммиака. И самым удивительным была не столько сама фиксация неподатли-iMiii лил ной молекулы, сколько то, что многие активные комплексы такого рода были давно', известны химикам. Но существовал некий психологический барьер, преодолён, который часто бывает труднее, чем совершить открытие: Просто никто до этого не ожидал, что молекулы ;i:ioi;i могут прочно «прилипать» к ионам металлов

В дальнейшем советские исследователи показали, что процесс фиксации можно значительно ускорить в присутствии катализаторов. Более того, с помощью все тех же переходных металлов удалось в обычных условиях заставить свободный азот соединяться с органическими вещёствами. Так были получены долгожданные и обнадёживающие результаты.

Дальше — больше. В 1969 году другая группа советских исследователей — на сей раз из Института химической физики поставила совсем уж невероятный эксперимент. Под руководством А. Е. Шилова удалось активировать азот металлокомплексами при температуре... минус 100 °С. Через год группе удалось, наконец, вплотную приблизиться к природной фиксации азота: были открыты системы активации на основе молибдена, и процесс шёл в обычных условиях. Таким образом, как бы. моделировалась работа нитрогеназы.

Возможно, ещё несколько рано торжествовать победу, ибо путь от пробирки до промышленной фиксации азота в мягких условиях не лёгок. Но все-таки будем считать, что главное сделано. Недаром большая группа учёных, руководимых М. Е. Вольпиным и А. Е. Шиловым, в 1982 году была удостоена Государственной премии СССР за цикл работ: «Химическая фиксация молекулярного азота соединениями переходных металлов».

Перейти на страницу:

Похожие книги

Карта времени
Карта времени

Роман испанского писателя Феликса Пальмы «Карта времени» можно назвать историческим, приключенческим или научно-фантастическим — и любое из этих определений будет верным. Действие происходит в Лондоне конца XIX века, в эпоху, когда важнейшие научные открытия заставляют людей поверить, что они способны достичь невозможного — скажем, путешествовать во времени. Кто-то желал посетить будущее, а кто-то, наоборот, — побывать в прошлом, и не только побывать, но и изменить его. Но можно ли изменить прошлое? Можно ли переписать Историю? Над этими вопросами приходится задуматься писателю Г.-Дж. Уэллсу, когда он попадает в совершенно невероятную ситуацию, достойную сюжетов его собственных фантастических сочинений.Роман «Карта времени», удостоенный в Испании премии «Атенео де Севилья», уже вышел в США, Англии, Японии, Франции, Австралии, Норвегии, Италии и других странах. В Германии по итогам читательского голосования он занял второе место в списке лучших книг 2010 года.

Феликс Х. Пальма

Фантастика / Приключения / Исторические приключения / Научная Фантастика / Социально-психологическая фантастика