В настоящее время большинство биохимиков склоняются в пользу теории П. Митчела, в которой большая роль отведена возникновению разности потенциала между внешней и внутренней сторонами мембраны митохондрий, в которых происходит образование молекул АТФ. Все события развиваются с участием мембраны, которая и является макроскопическим организатором молекулярных процессов. На рисунке 17 схематически показан этот сопряженный процесс, протекающий на поверхности и в глубине внутренней мембраны.
Рис. 17. Схема окислительного фосфорилирования с участием мембраны (по П. Митчелу). Волнистая линия — путь электрона; условно показано положение переносчиков электронов и фермента АТФазы
Цикл Кребса, действующий в матриксе, передает атомы водорода, отнятые у окисляемого вещества, никотин-амиддинуклеотиду (НАД), превращая его в НАД*Н + Н+
. Отсюда водород переходит к флавиновым ферментам- флавопротеидам (ФП), причем восстановленная форма ФП*Н2 отдает ионы водорода Н+ другой стороне мембраны, где они могут быть частично вытеснены ионами натрия или других металлов, а электроны следуют дальше. Они попадают на железосерусодержащий (FeS) белок. Этот белок отдает два электрона двум частицам убихинона Q: присоединяя два иона водорода 2Н+ из матрикса, убихинон при этом образует соединение QH. От цитохрома b к двум частицам QH поступают еще два электрона, а из матрикса присоединяются еще два иона водорода Н+ так, что в конечном счете образуется 2QH2. Затем все четыре иона водорода уходят на другую (внешнюю) сторону мембраны, а электроны начинают движение по цепи цитохромов с1, с, а, а3, попадая в конце концов к кислороду. Заметим, что удаление водородных ионов из внутреннего пространства митохондрии ведет к понижению кислотности внутри митохондрии и повышению ее во внешней зоне.Ионы водорода, вышедшие на внешнюю сторону мембраны, могут частично замещаться другими катионами. Все это вызывает появление разности потенциалов между двумя сторонами мембраны (трансмембранный потенциал). В нижней части рисунка 17 показано образование АТФ из АДФ и Ф.
Суммарная реакция фосфорилирования (образования АТФ), сопряженная с реакцией окисления НАД*Н, может быть записана так:
Суммарная реакция фосфорилирования (образования АТФ), сопряженная с реакцией окисления НАД*Н
Из этой схематической записи видно, что НАД*Н расстается с атомом водорода и электроном; два атома водорода и атом кислорода (точнее, 1/2 O2
) образуют воду, и вместе с тем за счет энергии этого процесса из АДФ и Ф получается АТФ. Ясно, что, удаляя воду, мы сместим равновесие вправо — торону образования АТФ.По мнению Митчела, фермент АТФ-аза, расположенный в мембране, действует так, что как только от молекул АДФ и Ф отделится молекула воды, ион Н+ втягивается через этот фермент во внутреннее пространство митохондрии (где среда слабощелочная), а ион ОН — переходит на внешнюю сторону мембраны (там среда слабокислая). На той и другой стороне перегородки происходит реакция нейтрализации.
Таким образом, разность потенциалов (разделение зарядов), наведенная в процессе дыхания в направлении, перпендикулярном мембране, является движущей силой процесса сопряженного фосфорилирования. В АТФ, в сущности, запасается энергия образования воды из водорода (отделенного от исходного пищевого вещества) и кислорода воздуха.
И во всемэтом сложном сопряженном механизме ионы металлов играют ответственную роль, обеспечивая транспорт электронов.
Глава 9. Многофункциональные ионы
Кобальт
Cоединение кобальта, проявляющее биологическую активность, содержится в организмах в очень малых концентрациях. Мы уже знаем, что скот, который пасется на пастбищах, бедных кобальтом, часто заболевает анемией; злокачественная анемия поражает и людей: до 1926 г. эта болезнь считалась неизличимой. В 1926 г. Мимо и Мерфи обнаружили, что сырая печень является хорошим средством борьбы со злокачественной анемией. С этого времени начались исследования, направленные на выделение из тканей печени вещества, обладающего лечебным действием. Двадцать два года потребовалось для достижения успеха. В 1948 г. наконец удалось получить в кристаллическом состоянии соединение красного цвета, оказавшееся комплексным соединением кобальта; оно и было действующим началом препаратов печени, излечивающих анемию.
Соединение это содержится в крови человека в концентрации 2,6*10-4
мкг на 1 мл! Оно образуется в кишечнике в результате деятельности бактерий и всасывается при условии, что в организме имеется особое белковое соединение, содержащее углеводы (мукопротеид). Недостаточное содержание кобальта в пище или отсутствие фактора всасывания и обусловливает развитие болезненных симптомов.Комплексное соединение кобальта получило название кобаламин. Известно несколько производных кобаламина. Продукт, полученный из печени, назвали витамином B12
. Его сложная формула приведена на схеме рисунка 18.Рис. 18. Витамин B12
(цианкобаламин)